CITY OF L	AS V	EGA	S		DATE:
INTER-OF	FICE	MEN	IORAN	MUDI	March 24, 2016
TO: Land Developme Department of Bu					FROM: Albert Sung, P.E. Flood Control Project Engineer Department of Public Works
SUBJECT:	Dra	ainage S	tudy for:		COPIES TO:
	Т	he SEV	ENTY		GCW Engineers
Cross Streets:		SWC	of Rampa	art & Alta	Seventy Acres LLC
File Number:	F:\Dep	ot\DSMe	mos\DS47	87A.ZNA.doc	Bart Anderson, P.E., DevCo
Parcel Number:	138-32	2-301-00	5, 006, 210	0-008	CCRFCD
Zoning Action:	SDR-6	32393; G	PA-62387;	ZON-62392	
FEMA Flood Zon	ie	YES	Х	NO	
Proposed Storm	Drain	YES	X	NO	,

HISTORY	DATE	DATE	COMMENTS	REVIEW	FEES PAID
	RECEIVED	REVIEWED		FEES	Payment Trn #
1 st Submittal	3/3/2016 & 3/9/2016	3/23/2016	See Comments Below	\$400.00	425231: \$400
			TOTAL FEES (LDDRS):	\$400.00	

REMARKS: This site development is within a FEMA SPECIAL FLOOD HAZARD AREA, Zone A. No permits of any kind will be issued for this project until a Conditional Letter of Map Revision (CLOMR/CLOMR-F) is received from FEMA.

The Drainage Study for the subject project has been reviewed and:

	is approved subject to conformance to all City standards and the following conditions:
X	must be resubmitted or supplemented including the following:
	is conditionally approved subject to Clark County Regional Flood Control District
	concurrence.
	is conditionally approved subject to NDOT concurrence.

- 1. This site development is located within a FEMA SPECIAL FLOOD HAZARD AREA, Zone A. No permits will be issued until a Conditional Letter of Map Revision (CLOMR/CLOMR-F) is received from FEMA. Permits may be issued upon the receipt of Conditional Letter of Map Revision (CLOMR or CLOMR-F) from FEMA.
- 2. A Letter of Map Revision (LOMR/LOMR-F) must be obtained from FEMA after the completion of any project within a FEMA Special Flood Hazard Area, Flood Zone "A". The bonded improvements shall include a line item of \$50,000.00 for the LOMR. The bonded improvements will not be released until the LOMR/LOMR-F is obtained from FEMA and filed with the City of Las Vegas.
- 3. Sites with a grade difference of 2 feet above or below existing are required to have approval from the *City Planning and Development Department*. The engineer must submit copies of the grading plans and detail sheet with a letter justifying the grade difference to the *City Planning Department* (229-6301). The engineer must provide Planning approval with the next submittal.
- 4. The site is located within the Flood Zone A and is adjacent to an existing or proposed *Clark County Regional Flood Control District* (CCRFCD) master planned facility. Therefore, CCRFCD concurrence is required prior to final approval of the drainage study.

- 5. Please obtain necessary 404 permits from US Army Corps of Engineers and provide a copy of the permit to City of Las Vegas Flood Control Section prior to issuance of the grading permit. Contact the St. George Field Office of the US Army Corps of Engineers for permit information.
- 6. Provide a comparison table between the 2013 MPU flow rates and the proposed condition at key system locations. The system design shall use the greater flow rates in the analysis. Review and revise the flows accordingly and resubmit the updated analysis. Once the updated analysis is confirmed, update the Report, Tables and Exhibits to match the revised flows.
- 7. Review the Development Area 4 drainage parameters to refine the density of the lot sizes in the various locations to better determine the drainage impacts of this 183 acre area. Update the hydrology of this area to reflect the impacts of the proposed development.
- 8. The proposed RCB system velocities are excessive and are routinely above 35 fps. This is well above the allowable 25 fps in the HCDDM. Review and revise the RCB design to reduce the velocity to a maximum of 35 fps. Review the overall impacts to the proposed RCB system to take into account the future upstream system extensions to see where the system can be modified to reduce the velocity within the RCB's. Velocities above 25 fps shall include additional design parameters to mitigate the high velocities. Discuss the mitigation options and recommendations for City and CCRFCD approval.
- 9. The provided WSPG analysis used an *n-value* of 0.015. Provide an additional WSPG analysis of the two main line RCB's using 0.013 for sensitivity analysis to see the impacts to the velocity.
- 10. Include new cross sections that incorporate the detailed grading plans for the inlet structures within the HEC-RAS analysis.
- 11. Provide an overall exhibit that shows the entire storm drain system, labels the publically maintained storm drain system and all maintenance access roads on a single sheet.
- 12. Proposed storm drain laterals have been identified to collect flows from Peccole West Lot 9 and Queensridge Fairway Homes. Extend the storm drain system to collect the 100-year flows from these adjacent subdivisions.
- 13. The proposed facilities will be a change to the existing CCRFCD Master Plan and will necessitate a Master Plan Change (MPC) with Regional Flood. Flood Control recommends that the MPC be included with the next Master Plan Update and not be a separate submittal with this project. Coordinate the MPC information and requirements with Regional Flood.
- 14. The referenced FEMA flow rates used in the downstream analysis are slightly lower than the fully developed condition values. Flood Control shall require that the FEMA analysis include the fully developed condition in the CLOMR request for this project.
- 15. Provide complete *Plans and Project Specifications* for approval by the *City of Las Vegas*. The Structural Plans and Details shall be a part of the Civil Improvement Plan set. This project is considered as a *Capital Improvement Project* (CIP) with developer funding.
- 16. Structural plans for the proposed storm drain improvements and pertinent flood control facilities must be submitted for review. Provide a soils report, structural calculations and specifications, two wet stamped structural sets, and a grading plan to the *Building Department* for processing. The engineer must provide a copy of *Building Department* approval of the structures to *Flood Control* prior to final acceptance of the drainage study.
- 17. All proposed improvements associated with the Storm Drain facilities shall be bonded and inspected. This project shall require Special Inspection. Coordinate the requirements of and the Agreements needed for Special Inspection with the Building Department.

- 18. The proposed improvements show drainage facilities of a size that must be reviewed for access and maintenance concerns. The engineer must submit an extra set of improvement plans to the *City Streets & Sanitation Department* for their review and comments. *Streets & Sanitation Department*'s approval must be secured prior to the conditional drainage study approval.
- 19. Storm drain facilities are located on cut/fill slopes. Revise the slopes and/or the storm drain alignment to maintain 16-foot access roads. Provide a cross section detail of the maintenance access.
- 20. Provide a minimum 25-foot concrete pad at the inlet structures of the RCB's to allow for proper maintenance. Include 16-foot wide concrete access ramps (10% maximum slope) to the RCB inverts. Provide detailed grading plans for all of the inlet structures as well as grading transitions. Provide cross sections of these facilities.
- 21. Provide a concrete pad and maintenance access to the inlet structures for the local storm drains. Show the needed drainage easements for these facilities.
- 22. The plans show preliminary mass grading with collection facilities within the parcels to intercept the flows prior to entering the infrastructure drainage improvements. The inlet collection system needs to incorporate stormwater quality (SWQ) features and Best Management Practices (BMP's) at these interim collection points. Revise to incorporate appropriate SWQ and BMP measures. How will these collection facilities be maintained without graded access to the structures?
- 23. Provide maintenance access road (12-foot wide with a minimum of 6" Type II) to manholes and discharge structures located outside of the improved roadways.
- 24. Revise the storm drain lateral layouts to eliminate the main line lateral bends and concrete collars. Provide manholes for change in alignment and grade.
- 25. Provide plan and profile for all proposed storm drain improvements. Include the Q and HGL on all profiles.
- 26. Relocate manholes to the sides of the RCB's and at a maximum 400-foot spacing. Provide manhole steps and provide 30-inch manhole covers for access. Show concrete collars for the manholes.
- 27. Verify and correctly label the existing drainage and sewer easements. Provide an Exhibit that shows the drainage easements that are being Vacated and an Exhibit that shows the proposed easements.
- 28. Provide for the new public drainage easements (privately maintained by the property owner) for the area of the site impacted by the proposed improvements. The easement shall note that the private drainage improvements are privately maintained and the easement must be dedicated and recorded by separate document prior to the final acceptance of the improvement plans. Provide legal description and an exhibit of the drainage easement to Flood Control and Mary Wulff (702-229-2139) of City of Las Vegas Right of Way Section for the recordation process after the subject drainage study is conceptually approved.
- 29. The existing and proposed utility crossings of the storm drain must be shown on the storm drain plan and profiles sheets and on the lateral profiles. Indicate the type of pipe material for water and sewer lines. Review separation requirements between utilities and show all of the utility crossings of the storm drains.
- 30. Show the size of the proposed riprap areas and include a detail on the plans. Include the Type 2 and geofabric in the detail section. It is noted that the minimum size of a riprap pad is d_{50} =8". Revise all pertinent plans and callouts accordingly.
- 31. Technical drainage studies are required for each of the future development super pads. The technical drainage studies for the developments may not be submitted until the conditional approval

of this pertinent infrastructure drainage study is obtained. Final approval for the infrastructure study must be obtained prior to conditional approval of the impacted development super pad drainage studies.

- 32. The proposed on-site drainage facilities are to be privately maintained. Add a note to the grading plan that "All on-site surface drainage facilities are to be privately maintained."
- 33. Complete the Construction Notes on the Grading Plan including pavement section and reference details for the call-outs of proposed improvements, i.e. RCB's, rip-rap, structure details, manholes, inlets, etc.
- 34. Provide a note on all grading plans: Property Owner is responsible to maintain the best management practices such as but not limited to the removal of accumulated sediment and debris and care of the vegetation.
- 35. This project currently has no Proposed Buildings or Structures. Should the project propose changes to this design assumption, then the Engineer is to update the drainage study detailing the flood zone impacts and provide addresses for each building in a FEMA Flood Hazard Zone prior to obtaining a grading permit. This information is necessary to insure that the elevation certificates are provided for each address prior to completion of construction. This information is required until such time as a LOMR is approved that removes the development from the SFHA.

NOTE: Please be advised that all land surface area disturbances over 1 acre or any area adjacent to a water way must submit to the *Nevada Division of Environmental Protection* a "Notice of Intent" to discharge that certifies a stormwater pollution prevention plan has been developed and is maintained on site; for inclusion in the Stormwater General Permit No. NVR100000. A phased construction unit in a contiguous subdivision is considered under construction until all stripped or disturbed surface areas have been covered by paving, building construction or planting. For more information, including forms and applications see http://ndep.nv.gov/bwpc/storm01.htm or call (775) 687-9429.

NOTE: The engineer must submit the drainage study to FEMA for a Conditional Letter of Map Revision (CLOMR). A favorable CLOMR must be obtained prior to the issuance of any permits. This site is located in a FEMA Zone A. Clark County Regional Flood Control District (CCRFCD) review and approval is required prior to recordation of final map or issuance of building/grading permits. The Engineer must send a copy of the report to the CCRFCD for review. The developer/engineer must also obtain a Letter of Map Revision (LOMR) using the approved drainage study as technical support to inform FEMA of the modifications within the flood zone. The approved LOMR must be submitted to the City of Las Vegas prior to the release of the bond. FEMA Elevation Certificates, showing as-built finish floor elevations, must be completed for each building in the FEMA A Zone. The certificate must be submitted to the City of Las Vegas Flood Control Section prior to scheduling a framing inspection.

T/R/S:

T20S/R60E/12

END OF REMARKS

Ays/pbj AREA L-32

TECHNICAL DRAINAGE STUDY FOR THE SEVENTY

840-050

March 2016

Prepared For:

Seventy Acres LLC, Fore Stars LTD, and 180 Land Co LLC 9775 West Charleston Boulevard Las Vegas, NV 89117

Phone: (702) 940-6930 Fax: (702) 940-6931

DRAINAGE STUDY INFORMATION FORM

Name of Development: Th	a Seventy				Date: March 201	6
Location of Development	a) Descriptive (Cross	Streets	North/South: <u>Hualapai Way</u>			
Location of Development	a) Boompare (eres		East/West: Rampart Boulevard			
	b) Section: 31, 32		Township: 20S		Range: <u>60E</u>	
	c) APN: 138-32-301-	005, 138	8-32-301-006 138-32-210-008, 138	3-32-202-0	01, 138-31-702-002	and 138-31-801-002
Name of Owner: Seventy						
Telephone No.: 702-940-6			<u>02-940-6931</u> E-Mail Address:	Not avail	able	
Address: 9775 W. Charles		evada	89117			
Contact Person-Name: F				phone No	.: <u>(702) 804-2000</u>	
				No.: (702)	804-2299	
Firm: GCW, Inc	<u></u>					
	bow Blvd; Las Vegas, N	V 8914	-6			
Type of Land Developme						
Rezoning			Subdivision Map		Clearing and Grad	ling Only
☐ Parcel Map			Planned Unit Development	\boxtimes	Other (Please spe	
☐ Large Parcel M	an	П	Building Permit		tual Drainage, Rough	Grade and Storm
Large Farcer W	ap		Danama . Chim	Drain		
3. Is the property bordere Control District Master 4. Proposed type of deve 5. Approximate upstream 6. Has the site drainage box Queensridge LOMR, Que	subject property located of or crossed by an existic Planned Facility? It is comment (Residential, Colland area which drains the en evaluated in the passens Borough Culvert State identify the proposed discoposed schedule for the Study Study	I in a deer ng or profession the su st? Y vudy scharge a subject profession the following scharge as subject profession with this found in the subject profession we know that the subject profession we will be subject profession with the subject profession we will be subject profession with the subject profession will be subject profession will be subject profession will be subject profession with the subject profession will be subject profession	res No If yes, please identify point(s) of runoff from the site: Exists	agh Grade document sting dual e study to the	tation: Peccole Ranc (2) – 12'x12' RCB at he local entity which mation to serve as th	h West Master Study. northeast corner of site has jurisdiction over ne Conceptual Drainage
SS BELSIC				Revis	ion	Date
NE & EXP. 12/3		Loca	I Entity File No.			
CIVIL	- A A A					4
No 146	91 4					
10.140						
	3/3/16		-			
Engineer's Seal					STANDARD F	OPM 1
REFERENCE:					STANDARD	ORIVI I

HYDROLOGIC CRITERIA AND DRAINAGE DESIGN MANUAL DRAINAGE SUBMITTAL CHECKLIST Map ID: Project Name: The Seventy Engineer: Ryan R. Belsick Firm Name: GCW, Inc. Address: 1555 S Rainbow Blvd Zip: 89146 State: NV City: Las Vegas Fax Number: (702) 804-2299 Phone Number: (702) 804-2000 Property Owner: Seventy Acres LLC, Fore Stars LTD, and 180 Land Co LLC Address: 9755 W. Charleston Blvd Zip: 89177 State: NV City: Las Vegas Date Received: Date Accepted for Review: Reviewed By: The following checklist is intended as a guide for the engineer preparing a Technical Drainage Study to submit to the local entity and Clark County Regional Flood Control District (if necessary). The listed items are the minimum information required prior to the entity performing a review. The engineer will remain responsible to ensure the Technical Drainage Study is prepared within the guidelines as set forth in the Clark County Regional Flood Control District (CCRFCD) Hydrologic Criteria and Drainage Design Manual (MANUAL). This document is intended as an aid in preparing Technical Drainage Studies. Each study submitted is reviewed for compliance with local and regional criteria. This form is not intended to be all inclusive and does not limit the extent of the information, calculations or exhibits which may be necessary to properly evaluate the intended land If items are not applicable for the subject site, provide N/A. I. GENERAL REQUIREMENT Yes Design Manual Standard Form 1 with the engineer's seal and signature. Design Manual Standard Form 4. 2 copies of the 24" x 36" Drainage Plan. A notarized letter from the adjacent property owner(s) allowing off-site grading or discharge. N/A II. MAPS AND EXHIBITS Yes No A copy of a current Flood Insurance Rate Map (FIRM) with the site delineated. A copy of the current CCRFCD Master Plan Update Figure, (F-x), for Flood Control Facilities and Environmental areas with the site delineated. STANDARD FORM 2 REFERENCE:

II. MAPS	II. MAPS AND EXHIBITS (Continued)				
Yes	No				
<u>X</u>		Off-site drainage basin maps for existing, interim and futu topography, basin boundaries, concentration points, and	re conditions showing the existing flows in cfs.		
<u>X</u>		On-site drainage basin maps for existing and proposed cotopography, basin boundaries, concentration points, and	onditions showing the existing on-site and off-site flows in cfs.		
<u>X</u>		Vicinity Map with local and major cross streets identified a	and a north arrow.		
III. DRA	INAGE PL	.AN			
Yes	No				
<u>X</u>		Sheet size: 24" x 36" sealed by a registered engineer in	the State of Nevada.		
<u>X</u>		Minimum scale: 1" = 60'.			
<u>X</u>		Project name.			
<u>X</u>		Vicinity Map with local and major cross streets.			
<u>X</u>		Revision box.			
<u>X</u>		North arrow and bar scale.			
<u>X</u>		Engineer's/consultant's address and phone number.			
<u>X</u>		Elevation datum and benchmark.			
<u>X</u>		Legend for symbols and abbreviations.			
<u>X</u>		Cut/fill scarps, where applicable.			
<u>X</u>		Street names, grades, widths.			
<u>X</u>		Proposed future and existing spot grades for top of curbs breaks, and along curb returns on both sides of the street	and street crowns at lot lines, grade et.		
<u>X</u>		Existing contours encompassing the site and 100 feet be important locations, where appropriate.	eyond with spot elevations for		
	N/A_	Minimum finish floor elevations with top-of-curb elevation	ns at upstream end of lot.		
	N/A_	Proposed typical street sections.			
REFER	RENCE:		STANDARD FORM 2		

III. DRA	III. DRAINAGE PLAN (Continued)				
Yes	No				
	N/A_	Streets with off-set crowns.			
<u>X</u>		Proposed contours or spot elevations in sufficient detail and slopes.	to exhibit intended drainage patterns		
<u>X</u>		Property lines.			
<u>X</u>		Right-of-way lines and widths, existing and proposed.			
<u>X</u>		Existing improvements and their elevations.			
<u>X</u>		Delineation of proposed on-site drainage basins indicating storm peak flows at basin concentration points.	ng area and 10-year and 100-year		
	<u>N/A</u>	Concentration points and drainage flow direction with Q	100 and V100 and D100 in streets.		
<u>X</u>		Cumulative flows, velocity, and direction of flow at upstream the 10-year and 100-year flows.	eam and downstream ends of site for		
	N/A_	Location and cross-section of street capacity calculation	S.		
<u>X</u>		Cross-sectional detail for channels, including cutoff wall	locations.		
<u>X</u>		Existing and proposed drainage facilities, appurtenance ditches, swales, storm drain systems, unimproved and in stating size, material, shape, and slope with plan and pr	mproved channels, and culverts, etc.)		
<u>X</u>		Existing and proposed drainage easements and widths sectional detail must be provided that shows appropriate	shown with sufficient detail. A cross e lining and reinforcement.		
<u>X</u>		Location and detail of existing, proposed, and future blo x 48". Wrought iron gate is required for flows > 10 cfs.	ck wall openings. Minimum size is 16"		
<u>X</u>		Location and detail of flood walls illustrating depth of floor	w, proposed grouting height, etc.		
	<u>N/A</u>	Perimeter retaining wall locations. All existing and proportion must be shown with adjacent ground elevations. Flood vanit.	osed walls (retaining screen and flood) walls with 8-inch concrete masonry		
(N/A	Building and/or lot numbers.			
<u>X</u>		Alignment of all existing, proposed, or future Regional F	acilities adjacent to the site.		
<u>X</u>		Limits of existing floodplain based on current FIRM or b proposed floodplains based on best available information	est available information; limits of n.		
REFER	ENCE:		STANDARD FORM 2		

III. DRA	INAGE PL	_AN (Continued)	
Yes	No		
<u>X</u>		For areas in Zone A, AE, AH, and AO, base flood elevati lot; BFEs may be listed on each lot, or in a table. Finish of 18 inches above BFE.	ions (BFEs) must be shown for each floor elevations must be a minimum
	N/A_	Appropriately elevated "humps" 6 inches above the 100 accesses where the intent is to protect the site from the	year water surface elevation at site Q100 flows.
	N/A_	Street slopes for perimeter and interior streets. The mir	
-	<u>N/A</u>	Location and detail of best management practice (BMP) development (LID) (if required).	for parking lots and low impact
IV. HYD	ROLOGIC	C ANALYSIS	
Yes	No		
<u>X</u>		Appropriate soil information and Soils Map for existing a and property delineated.	nd future conditions with subbasins
<u>X</u>		Input and output information for existing conditions from The flow routing diagram must be provided with HEC-1 r	computer models (HEC-1 or TR-55). models.
<u>X</u>		Input and output information for future conditions from continuous The flow routing diagram must be provided with HEC-1 in	omputer models (HEC-1 or TR-55). models.
<u>X</u>		Use of correct precipitation values in and around the Mc	:Carran Airport rainfall area.
<u>X</u>		A discussion in the text of the hydrologic analysis justifying supporting assumptions, and calculations.	ing subbasin boundaries and cutoffs,
<u>X</u>		A summary table of stormwater flows showing basin are basins and combined basin flows, where applicable.	ea, Q10 and Q100 for both individual
<u>X</u>		Copies of supporting technical information referenced frastatement accepting these results.	
<u>X</u>		On-site facilities must perpetuate flows through or arour impacting adjacent property owners in accordance with	nd the site without significantly current Nevada Drainage Law.
	N/A	Calculation for impervious area for parking lots and LIDs	s (if required).
REFER	ENCE:		STANDARD FORM 2

V. HYDRAULIC ANALYSIS				
	No			
- val 45	N/A_	Flow split calculations and supporting documentation or r calculations used.	eference for the method of flow split	
	<u>N/A</u>	Normal depth street flow calculations and cross section of streets. Provide "d x v" products for the Q100 and Q10 interior and all perimeter streets. Q100 d x v < 8. Q10 rights-of-way > 80 feet. Calculations must be labeled by Grading Plan.	$d \times v < 6$ and 12 foot dry lane for	
	N/A_	A summary table of interior and exterior street capacity c Q100 flow, slope, depth of flow, velocity and depth times to meet 12 foot dry lane criteria.	alculations showing the street name, velocity product and streets needing	
	<u>N/A</u>	Appropriate hydraulic calculations for block wall opening clogging factor. (Assume the lower half of the opening is	s assuming a 50 percent vertical s plugged.)	
<u>X</u>		Appropriate hydraulic calculations at drainage easement set finish floor elevations. Hydraulic calculations must include and tee intersection losses, where appropriate.	entrance and discharge locations to clude submerged weir, superelevation	
<u>X</u>		Provide necessary freeboard requirements to set the fini buildings, 2 x depth of flow or depth of flow plus 18 inche minimum requirement is 6 inches above adjacent upstredrainage easements must always be provided with 18 in weir height or flow depth, whichever is greater.	es of freeboard, whichever is less. The eam top of curb. Buildings adjacent to	
<u>X</u>		A complete water surface profile analysis (HEC-2, HEC-FEMA Zone A flood zones.	RAS, etc.) for channel flows and	
		 Field survey data. Input and output information. Plotted cross-sections based on survey with proper expenses. A map showing the location of the cross-sections. Analysis of both sub and super-critical flow segments. A summary table and a discussion of the results in the 	S.	
<u>X</u>		Provide a 50 percent clogging factor in the capacity calc	ulation for drop inlets.	
<u>X</u>		Hydraulic calculations for culverts and storm drains. D-L storm drain pipes in public rights-of-way, including head	oad calculations must be provided for water pool inundation.	
<u>X</u>		The mitigation of nuisance water, both during const condition, must be addressed.	ruction and in the fully developed	
	N/A_	Provide BMP type, size and supporting calculations for p	parking lots and LIDs (if required).	
REFER	ENCE:		STANDARD FORM 2	

CITY OF LAS VEGAS

MINIMUM DRAINAGE STUDY CRITERIA STANDARD FORM 2 CHECKLIST SUPPLEMENT

(Revised 5/18/11)

The following checklist is intended as a supplemental guide for the engineer preparing a Technical Drainage Study submittal to the City of Las Vegas. This supplement focuses on requirements specific to the City of Las Vegas. The requirements presented are in addition to the Clark County Regional Flood Control District (CCRFCD) Manual Standard Form 2. The listed items are the minimum information required prior to the City performing a review. The engineer will remain responsible to ensure the Technical Drainage Study is prepared within the guidelines as set forth in the CCRFCD Hydrologic Criteria and Drainage Design Manual (Design Manual).

An appointment must be made to preview this checklist in conjunction with CCRFCD Standard Form 2 prior to the City accepting a new drainage study for review. The engineer must contact the Flood Control Section at (702) 229-6541 to schedule a submittal appointment.

If items are not applicable for the subject site, provide N/A.

If items	If items are not applicable for the subject site, provide NA.					
I. GEN	I. GENERAL REQUIREMENT					
Yes	No					
	N/A	A notarized letter from the adjacent property owner(s) allowing off-site grading. (A copy of the letter must be received prior to final acceptance of the drainage study.)				
х		Copies of all conditions of approval for development related to this property. (e.g. zoning, use permit, tentative map, etc.) Verify compliance with conditions.				
х		An electronic copy of the complete submittal is required to be submitted with one original hard copy of the study. Electronic documents should be on a universal computer-readable digital output device replicating your submittal. An Indexed Portable Document Format (PDF) or Print Ready CAD file formats with a minimum of 300dpi are the desired formats. If figures are in color, they must be scanned in color and saved as a separate file. by initial here, the engineer on record acknowledges that the electronic copy is an identical replicate of the original hard copy submitted to the City of Las Vegas.				

II. GR	ADING	PLAN INFORMATION
Yes	No	
Х		(1) 24" X 36" copy of the Grading Plan, (including all Detail Sheets) sealed by the engineer.
Х		Proposed future and existing spot grades for top of curbs and street crowns at lot lines, grade breaks, and along curb returns on both sides of the street. Note: Proposed top of curb elevations must be provided for both sides of roadways even if only half street construction is required.
Х		Label existing topography at a minimum 5 foot elevation interval including adjacent developments, finished floor elevations of existing buildings and top of existing curbs extending 100 feet around the perimeter of the site. (*Measured from the centerline of the adjacent roadway.)

CITY OF LAS VEGAS MINIMUM DRAINAGE STUDY CRITERIA CHECKLIST

II. GR	ADING P	LAN INFORMATION
Yes	No	
Х		Proposed on-site and off-site storm drains and other flood control facilities with plan and profile sheets for public storm drains showing the class of pipe, (Class III, IV, V, etc.), design hydraulic grade line, (HGL) and 100 year storm flow. A public drainage easement must be provided over onsite storm drains conveying off-site flows. An overflow path must be provided over all storm drains.
. X		All existing and "to be constructed" walls with cross-sections showing wall type, (e.g. block wall, retaining wall, flood wall, etc.), with limits clearly defined, adjacent ground elevations. Wall heights must meet current ordinances and in no case exceed 14 feet above the adjacent property.
	N/A	Street slopes for both interior and perimeter streets. Note: The minimum slope for a roadway is 0.4 percent, a minimum 18-inch storm drain must be provided where minimum slopes cannot be met.
	N/A	Back of lot elevations and lot drainage pattern for all lots including common lots.
Х		Sites with a grade difference two feet above or below existing ground are required to have approval from City of Las Vegas Current Planning. Current Planning approval is required prior to final approval of the drainage study.
Х		On-site facilities must perpetuate flows through or around the site without significantly impacting adjacent property owners. (The project must pass flows through the site every 600 feet where the project is blocking flow paths.)
	N/A	This project uses a solid grouted stem wall (or approved alternate) at the back of sidewalk to provide erosion protection for landscaped areas where the depth of flow in the roadway exceeds the back of walk elevation. A corresponding cross-section detail is included.
	N/A	Commercial and Common Lot Landscape areas are not allowed to drain over the sidewalk. The grading plans show flow lines with grades and sidewalk under drains for all landscape areas draining to the public ROW.

Yes	No	
	N/A	Concrete valley gutters are required in parking lots with slopes less than 1 percent. Slopes through cul-de-sac must be at a 1 percent minimum where flow is drained through the cul-de-sac.
Х		Ten-foot wide public drainage easements to be privately maintained are allowed for flow less than 20 cfs. The depth of flow entering the easement must be checked using the submerged weir calculation.
Х		The limits of the flood zones and the base flood elevations (BFE) must be shown on all grading plans for all developments within a Special Flood Hazard Zone A, AO, AE, etc.
Х		Minimum finish floor elevation is 6 inches above highest adjacent top of curb. Finish floor calculations must include allowances for super elevations on curves and velocity head for tee intersections.
Х		Finished floor elevations for buildings adjacent to public drainage easements must be a minimum of 18 inches above the Q100 weir of submerged weir elevation, whichever is greater.

CITY OF LAS VEGAS MINIMUM DRAINAGE STUDY CRITERIA CHECKLIST

III. Lo	cal Entity	Criteria - City of Las Vegas – Manual Section 1600
Yes	No	
	N/A	Lots with "B and C Type Drainage" that drain from one lot to another through a drainage easement shall be required to install an underground nuisance drainage system or a 2-foot valley gutter. 16" x 24" minimum block wall openings are required for both options.
	N/A	Bubblers are required across 80 foot and greater ROW streets. When flows exceed 10 cfs, bubblers larger than 18 inches will be required up to a maximum of 36". Inlets must be sized to match the pipe size provided.

- Contact the Flood Control Section regarding the drainage study review fee. These fees are payable at the time of submittal.
- The Drainage Study must be conditionally approved prior to submitting improvement plans to the Civil and Planning Development of the Department of Building and Safety for review.

This document is intended as an aid in preparing Technical Drainage Studies for the City of Las Vegas. Each study submitted is reviewed for compliance with local and regional criteria. This form is not intended to be all-inclusive and does not limit the extent of the information, calculations or exhibits which may be necessary to properly evaluate the intended land use.

TECHNICAL DRAINAGE STUDY FOR THE SEVENTY

840-050

March 2016

Prepared For:

Seventy Acres LLC, Fore Stars LTD, and 180 Land Co LLC 9775 West Charleston Boulevard Las Vegas, NV 89117 Phone: (702) 940-6930

Fax: (702) 940-6931

TECHNICAL DRAINAGE STUDY FOR THE SEVENTY

840-050

March 2016

Prepared For:

Seventy Acres LLC, Fore Stars LTD, and 180 Land Co LLC 9775 West Charleston Boulevard Las Vegas, NV 89117

Phone: (702) 940-6930 Fax: (702) 940-6931

Prepared By:

GCW, Inc. 1555 South Rainbow Boulevard Las Vegas, Nevada 89146 Phone: (702) 804-2000

Fax: (702) 804-2299

TABLE OF CONTENTS

No.	<u>Pa</u>	<u>age</u>
l.	INTRODUCTION	1
II.	LOCATION AND DESCRIPTION	4
III.	FEDERAL EMERGENCY MANAGEMENT AGENCY (FEMA) FLOOD HAZARD ANALYSIS	4
IV.	CLARK COUNTY REGIONAL FLOOD CONTROL DISTRICT (CCRFCD) FACILITIES	8
V.	HYDROLOGY	10
VI.	EXISTING CONDITIONS	12
VII.	PROPOSED CONDITIONS	16
VIII.	ULTIMATE CONDITIONS	22
IX.	STORM DRAIN FACILITIES AND PROTECTION	22
X.	FEMA CONDITIONAL LETTER OF MAP REVISION (CLOMR)	31
XI.	CONCLUSIONS AND RECOMMENDATIONS	42
ΧII	RFFFRENCES	43

LIST OF TABLES

No.	<u>Description</u>	<u>Page</u>
1	SUMMARY OF EXISTING CONDITIONS HEC-1 MODEL	14
2	SUMMARY OF PROPOSED CONDITIONS HEC-1 MODEL	16
3	PROPOSED CONDITIONS FLOW RATE SUMMARY	20
4	100-YEAR ROUGH GRAD DITCH CHARACTERISTICS	20
5A	WSPGW MAINLINE 1 SUMMARY – MAIN1.WSW	26
5B	WSPGW MAINLINE 2 SUMMARY – MAIN2.WSW	27
6	WSPGW MODEL STATION CONVERSION SUMMARY - MAIN1.WSW	29
7	EFFECTIVE FLOW RATES MAIN 1 WASH	34
8	EFFECTIVE FLOW RATES MAIN 1 WASH AND RCB	37
a	MAIN 1 WASH – WATER SURFACE ELEVATION COMPARISON TABLE	38

LIST OF FIGURES

<u>No.</u>	<u>Description</u>	<u>Page</u>
1	VICINITY MAP	5
2	LOCATION MAP	6
3	FLOOD INSURANCE RATE MAP (FIRM)	7
4	CCRFCD FACILITIES	9
5	EXISTING CONDITIONS DRAINAGE MAP	13
6A	PROPOSED CONDITIONS OVERALL DRAINAGE MAP	19
6B	PROPOSED CONDITIONS ONSITE DRAINAGE MAP	21
7	RECOMMENDED FACILITIES MAP	23
8	WSPGW EXHIBIT	25
9	EXISTING CONDITIONS HEC-RAS X-SECTION MAP	33
10	PROPOSED CONDITIONS HEC-RAS X-SECTION MAP	35
11	CLOMR WORKMAP	36
12	ANNOTATED FIRM	40

I. INTRODUCTION

Seventy Acres LLC, Fore Stars LTD, and 180 Land Co LLC are proposing to construct The Two Fifty, a multi-family residential and single-family residential development consisting of luxury multi-family and estate lots upon the land currently operated as the Badlands golf course located south of Alta Drive, north of Charleston Road, east of Hualapai Way and west of Rampart Boulevard, in Las Vegas, Nevada. A land use exhibit provided in Appendix A shows the proposed site layout. The project improvements include: 3,020 luxury multi-family units and minimum 1 acre to 5 acre estate lots on the 253 acres of APNs 138-32-301-005 (17.49 acres), 138-32-301-006 (53.03 acres), 138-32-210-008 (2.37 acres), 138-32-202-001 (2.13 acres) 138-31-702-002 (166.99 acres) and 138-31-801-002 (11.28 acres). Onsite storm drain facilities are proposed to convey the offsite flows from the existing storm drain facilities in Hualapai Way and Charleston Boulevard to the existing dual (2) - 12-foot wide by 12-foot high reinforced concrete box culverts (RCBC) in Rampart Boulevard at the Rampart Boulevard and Alta Drive intersection. The Two Fifty development will be constructed in three phases. The 1st phase of development consists of mass grading and storm drain improvements for approximately 70 acres of APNs 138-32-301-005, 138-32-301-006, 138-32-210-008, and 138-32-202-001 (hereafter referred to as The Seventy). The 2nd phase of development includes construction of the luxury multi-family units within The Seventy. The 3rd phase of development includes construction of the estate lots within approximately 180 acres of APNs 138-31-702-002 and 138-31-801-002 (hereafter referred to as The One Eighty). The purpose of this report is to provide a conceptual drainage analysis for The Two Fifty and serve as a technical drainage study for The Seventy to determine the impacts to downstream developments and facilities to establish allowable flow rates and drainage patterns for interior development, and to recommend storm drain facilities to convey storm flow through the project site. This study also addresses the 1st phase of development which includes The Seventy mass grading and onsite storm drain improvements. The 2nd phase of development will be addressed in a future technical drainage study updates and the 3rd phase of development will be addressed in a future technical drainage study for The One Eighty. The following tasks were performed in the preparation of this report:

- Identify and review previous drainage studies for the project site and areas adjacent to the project.
- Identify the existing FEMA floodplain designation for the project site.
- Determine recommended proposed FEMA floodplain designations within the project limits.

- Identify existing and proposed regional drainage facilities within and adjacent to the project site.
- Identify existing drainage areas and storm drain facilities that affect the site.
- Perform field investigation.
- Estimate peak runoff impacting the proposed grading and storm drain improvements during the 10-year and 100-year return period storms for existing and proposed conditions.
- Recommend conceptual drainage facilities for The One Eighty to protect the proposed project and downstream properties from storm runoff.
- Prepare hydraulic analyses for The Seventy storm drain and proposed channel improvements.
- Recommend drainage facilities to protect the proposed project from storm runoff.

GCW has obtained and reviewed technical drainage studies and grading plans from the City of Las Vegas (CLV) for the site and offsite properties adjacent to the site to determine existing conditions offsite and onsite drainage patterns and discharge flows into the site. The studies reviewed include:

- Technical Drainage Study for Peccole Ranch Golf Course (Phase II) (DS 1347)
- 2. Technical Drainage Study for Peccole West Commercial Center (DS 2364)
- 3. Technical Drainage Study for Rampart Boulevard (DS 2696)
- Technical Drainage Study Update for Peccole Ranch Golf Course
 Maintenance Yard (DS 1626)
- Hydrology Study Update for Queensridge Fairway Homes (DS 2307)
- 6. Technical Drainage Study Peccole West Lot 9 (Phase II) (DS 1630)
- 7. Technical Drainage Study for Peccole West Lot 12 (DS 1650)
- 8. Technical Drainage Study for Village 12 Hualapai Way Improvements (DS 1853)
- Technical Drainage Study for Hualapai Way Rough Grading, Alta Drive to Charleston Boulevard (DS 1758)
- 10. Technical Drainage Study for Peccole West Lot 11 (DS 1753)
- 11. Technical Drainage Study for Peccole Ranch Parcel 19 & 20 (DS 2172)
- 12. Technical Drainage Study for San Michelle West (DS 2226)
- 13. Technical Drainage Study for Peccole Lot 10 Parcel 18 (DS 2203)
- 14. Technical Drainage Study for Windsor at Queensridge (DS 3279)

- 15. Technical Drainage Study for Club House (DS 1555)
- 16. Technical Drainage Study for the Versailles (DS 2236)
- 17. Master Drainage Study for Peccole Ranch Phase II (DS 1140)
- 18. Technical Drainage Study for Badlands Hole 9 (DS 1974)
- 19. Technical Drainage Study for Peccole West Business Center (DS 1856)
- 20. Technical Drainage Study for Peccole West Lot 12 (Park Area) (DS 1929)
- 21. Technical Drainage Study for One Queensridge Place (Condo Towers) Update 2 (DS 3746)
- 22. Technical Drainage Study for Apple Drive at Peccole Ranch (DS 1576)
- 23. Technical Drainage Study for Alta Drive at Peccole Ranch (DS 1588)
- 24. Technical Drainage Study for Peccole Ranch Phase II Master Plan (DS 273)
- Conceptual Drainage Study for Peccole Ranch Phase II Master Plan (DS 1273)

An exhibit showing the name and general location of the adjacent developed areas and referenced studies listed above has been included in Appendix A. In order to identify offsite drainage patterns impacting the proposed site, a field visit was performed to confirm overall existing conditions drainage patterns for the site and offsite adjacent parcels.

Hydraulic information from the following study has been referenced for the purposes of this report:

The Technical Drainage Study for Queens Borough Culvert (Reference 1, hereinafter referred to as the Queens Borough Culvert Study) was approved by the CLV on August 30, 2005. The Queens Borough Culvert Study designed the existing approximately 2,000 linear foot dual (2) - 12-foot wide by 12-foot high RCB storm drain system (CCRFCD Facility APSO 0000) downstream of the existing dual (2) - 12-foot wide by 12-foot-high RCB at the Rampart Boulevard and Alta Drive intersection. Proposed flows discharged from the site will be conveyed by the Queens Borough Culvert Study storm drain north to the Angel Park Detention Basin (CCRFCD Facility APNO 0001). Pertinent referenced material from the Queens Borough Culvert Study has been included in Appendix C. Updates to the Queens Borough Culvert Study included the following:

Update to the Technical Drainage Study for Queens Borough Culvert (Reference
 2) – Approved by CLV on December 30, 2005.

 Update #2 to the Technical Drainage Study for Queens Borough Culvert (Reference 3, hereinafter referred to as the Queens Borough Culvert Study Update #2 Study) – Approved by CLV on April 21, 2006.

II. LOCATION AND DESCRIPTION

The Seventy is located on approximately 70 acres in Sections 31 and 32, Township 20 South, Range 60 East, M.D.M., in the City of Las Vegas, Nevada. Please refer to Figures 1 and 2 for the vicinity and location of the project site. The site is presently developed as a golf course with existing washes traversing the project site conveying flows from west to east. Offsite flows are conveyed to the site from the west and south through existing reinforced concrete box culverts under Hualapai Way and Charleston Boulevard. Offsite flows from residential subdivisions and commercial development adjacent to the golf course are discharged to the existing golf course as surface flow through existing storm drain and/or drainage easements. The full street improvements are in place for Alta Drive, Charleston Road, Hualapai Way and Rampart Boulevard. For this study, the proposed improvements include mass grading and onsite storm drain facilities. Grading and development of the future onsite development will include multifamily and associated open space and parking area development and will be addressed in a future technical drainage study updates.

III. FEDERAL EMERGENCY MANAGEMENT AGENCY (FEMA) FLOOD HAZARD ANALYSIS

Based on the Flood Insurance Rate Map (FIRM) Community Panel 32003C 2145 F dated November 16, 2011, and FIRM Panel 32003 C 2150 E dated September 27, 2002, and revised to reflect the Letter of Map Revision (LOMR) Case No. 06-09-B483P dated September 21, 2006, and LOMR Case No. 06-09-B486P dated October 19, 2006, the project site is crossed by a FEMA-designated Special Flood Hazard Area (SFHA). The proposed improvements will construct closed conduit facilities that will contain and convey the 100-year flow (1% annual chance flood discharge) through The Seventy. Figure 3 shows the site denoted on a portion of the aforementioned FIRM panels. A Conditional Letter of Map Revision (CLOMR) will be obtained from FEMA prior to construction of this project. A LOMR will be obtained from FEMA once construction of the onsite RCB storm drain system is substantially completed and functional.

IV. CLARK COUNTY REGIONAL FLOOD CONTROL DISTRICT (CCRFCD) FACILITIES

Figure 4 is reproduced from Figures F-12 from the 2013 Las Vegas Valley Flood Control Master Plan Update (Reference 4, hereinafter referred to as the 2013 MPU). The figure depicts the project site in relation to existing and proposed regional facilities. As shown on Figure 4, the following facilities are within or adjacent to the project site:

- Angel Park South Branch (APSO 0000-0204)
- Angel Park Peccole 1 (APP1 0000)
- Angel Park Peccole 2 (APP2 0000)

The Two Fifty project site contains existing CCRFCD Facilities APSO 0050, APSO 0067, and APP2 0000. The existing CCRFCD Facilities within The Two Fifty project site are labeled as natural washes in the 2013 MPU. The One Eighty proposes approximately 4,700 linear feet of CCRFCD Facility APSO 0067 and approximately 2,300 linear feet of CCRFCD Facility APP2 0000 as future RCB storm drain. The Seventy proposes to construct CCRFCD Facility APSO 0050 and approximately 1,900 linear feet of CCRFCD Facility APSO 0067 and approximately 1,485 linear feet of CCRFCD Facility APP2 0000 as RCB storm drain.

The 2013 MPU flow rates for the proposed CCRFCD Facilities will be superseded by the project specific hydrology presented in this report. Flows conveyed through the site are discharged northeast to existing CCRFCD Facility APSO 0020 located at the Rampart Boulevard and Alta Drive intersection. CCRFCD Facility APSO 0020 is labeled as a dual (2) - 12-foot wide by 12-foot high RCB in the 2013 MPU. CCRFCD Facility APSO 0020 discharges flow east to existing CCRFCD Facility APSO 0000. CCRFCD Facility APSO 0000 is labeled as a dual (2) - 12-foot wide by 12-foot high RCB in the 2013 MPU. CCRFCD Facility APSO 0000 conveys flow northeast to the existing Angel Park Detention Basin. The hydraulic design for CCRFCD Facility APSO 0000 was presented in the Queens Borough Culvert Study. The Angel Park Detention Basin is labeled as CCRFCD Facility APNO 0001.

V. HYDROLOGY

The methodology presented in this study is in compliance with the *CCRFCD Hydrologic Criteria and Drainage Design Manual* (Reference 5, hereinafter referred to as the Manual).

Model Description - The drainage subbasins were modeled using the SCS Unit Hydrograph method within the U.S. Army Corps of Engineers *HEC-1 Flood Hydrograph Package* (Reference 6). Since the drainage area for each watershed within the project is less than 8 square miles, an SDN 3 design storm was selected for use in the HEC-1 computer model. The 2013 MPU ALLGOW3.dat HEC-1 model has been referenced and revised for the purposes of this report.

Precipitation – The project site and tributary drainage areas lie outside of the McCarran Rainfall Area as identified in the Manual. Rainfall depths for the project site were calculated utilizing GIS data distributed by the Clark County GISMO (Geographic Information Systems Management Office). The GIS rainfall depths were extracted from the NOAA Rainfall Atlas and have been adjusted according to the approach outlined in Section 500 of the Manual. The adjusted point precipitation values for the onsite drainage subbasins range from 2.88 inches to 3.08 inches for the 100-year storm event and 1.64 inches to 1.76 inches for the 10-year storm events. The rainfall exhibit has been included in Appendix A.

Curve Numbers (CN) – The soils information for the project watershed was referenced from the *Soil Survey of Las Vegas Valley Area, Nevada, Part of Clark County* (Reference 7). This survey delineates families of soil types and the Hydrologic Soil Group (HSG) of each family. A soils map containing the project site is included in Appendix A. The soil classification for the site has been revised since the 2013 MPU was prepared and the soil classification used for the onsite portion of the model has been revised accordingly. A copy of the *Custom Soil Resource Report for the Soil Survey of the Las Vegas Valley Area, Nevada, Part of Clark County* from the U.S. Department of Agriculture and Natural Resource Conservation Service (Reference 7) have been included in Appendix A. The report shows that the project area and offsite subbasins consist of Soil Type 152 (Cave). Soil Type 152 is classified as 100 percent Hydrologic Soil Group (HSG) Type "D". Note that the 2013 MPU hydrology shows Soil Type 152 classified as 5 percent HSG Type "A", 10 percent HSG Type "B", and 85 percent HSG Type "D". As a result of the revisions, CNs for the offsite and onsite

existing conditions subbasins are slightly higher than the CNs presented in the 2013 MPU.

The land uses or land covers used for the subbasins shown for the adjacent parcels and The One Eighty portions of the site are referenced from the 2013 MPU. Due to the size of the future estate lots (minimum 1 to 5± acres), curve numbers for the future The One Eighty subbasins will be less than or equal to the curve numbers presented in this report for existing and proposed conditions.

The land uses or land covers used for the developed The Seventy portion of the site consist of "commercial and business." Weighted curve numbers for the subbasins were calculated using GIS. The land covers used for the mass graded portion of the site in the proposed conditions model conservatively assumes "commercial and business" in lieu of "newly graded areas" since the difference in the calculated curve numbers are comparable (commercial CN 95 vs. newly graded CN 94).

Curve numbers for existing and developed conditions basins, as well as a curve number matrix of the soil type and for each land use, are included in Appendix A.

For the given soils, CN values were determined from appropriate columns of Table 602 and 602A of the Manual. Composite CN values of 82 to 95 were determined for the existing and developed conditions onsite subbasins, respectively.

Drainage Areas and Flow Patterns - The subbasins and flow patterns used for the hydrologic modeling were determined from elevations established for the project site in a master grading digital file. Offsite hydrology was determined from research of existing drainage studies for adjacent developments.

Lag Time - The lag time (TLAG) is described as the time between the center of mass of rainfall and the time of peak discharge from a basin. Lag time can be related to time of concentration (T_c) by the following relationship: TLAG = 0.6 (T_c). The time of concentration (T_c) is defined as the time required for runoff to flow from the most hydraulically distant area of the basin to the outlet of the basin or a design point. The procedure for calculating T_c is outlined in Section 602 of the Manual. Lag time calculations for the drainage subbasins have been included in Appendix A on Standard Form 4.

VI. EXISTING CONDITIONS

The site is presently developed as a golf course with existing washes traversing the project site conveying flows from west to east. A site visit was performed to confirm drainage patterns within the site and for parcels adjacent to the site. Offsite flows impact the site from the west and south. Offsite flows are conveyed to the site from the west via an existing dual (2) 8-foot wide by 8-foot high RCBC (CCRFCD Facility APSO 0204) under Hualapai Way. Additionally, offsite flows are conveyed to the site from the south via an existing RCBC under Charleston Boulevard. Offsite flows from residential subdivisions and commercial development adjacent to the golf course are discharged to the existing golf course as surface flow through existing storm drain and/or drainage easements. Flows conveyed through the site are discharged northeast to existing CCRFCD Facility APSO 0020 a dual (2) - 12-foot wide by 12-foot high RCB located at the Rampart Boulevard and Alta Drive intersection.

Figure 5 depicts the subbasins and drainage patterns used in the existing conditions hydrologic analysis. Offsite subbasins west of Hualapai Way and south of Charleston Boulevard are referenced from the 2013 MPU ALLGOW3 HEC-1 Model. The portion of the 2013 MPU tributary to 2013 MPU Concentration Point CC57B-4 located at the intersection of Alta and Rampart has been revised with this report. The model has been revised to determine onsite project specific flow rates and existing conditions flow rates discharged to CCRFCD Facilities APSO 0020 and APSO 0000. Copies of Figures H-29 and H-30 from the 2013 MPU have been included in Appendix C. The results of the Existing Conditions HEC-1 model are summarized in Table 1. A copy of the Existing Conditions HEC-1 model output is included in Appendix A.

B OR CP*	AREA (AC)	100 YR (CFS)	10 YR (CFS)
57B-1	31.1	80	40
57B-1A	28.4	54	20
57B-1A 57B-1B	19.3	51	25
57B-1C	0.6	2	1
57B-1C 57B-2A	6.3	14	6
57B-2A 57B-2B	3.0	8	3
57B-2C	1.7	5	2
57B-2D	5.7	16	7
57B-2E	14.5	42	19
57B-2F	57.8	147	69
57B-2G1	1.6	5	2
57B-2G1	4.6	12	5
57B-2G2 57B-2H1	18.6	32	13
	10.0	21	9
57B-2H2	4.6	12	5
57B-2I	30.8	44	28
57B-3	16.6	36	14
57B-3A	32.8	66	25
57B-3B	4.4	11	4
57B-3C	11.8	26	11
57B-3D	16.0	32	13
57B-3E	7.4	17	7
57B-3F	1.5	4	2
57B-3G	82.7	202	101
57B-4	4.5	8	3
57B-4A	7.1	24	13
57B-4B		23	12
57B-4C	7.8	2134	990
C12B*	-	56	26
C57B-2E	-	259	127
C57B-4	-	47	25
C57B-4C	-	4720	2354
CC57B-4	-	36	14
CCON6	-	2128	1025
CCON10	-	2227	1065
CCON11	-		1171
CCON17	-	2472	900
CCPIC-A*		1895	32
CON1	-	86	55
CON2	-	164	64
CON3	-	189	66
CON4	-	195	8
CON6	_	18	19
CON8	-	54	1012
CON9		2120	1012
CON10	-	2120**	
CON11	-	2128	1017

TABLE 1 SUMMARY OF EXISTING CONDITIONS HEC-1 MODEL			
SB OR CP*	AREA (AC)	100 YR (CFS)	10 YR (CFS)
CON12	-	83	36
CON13	-	118	49
CON14	_	174	79
CON15	-	346	142
CON16	-	367	150
CON17	-	368	153
CON18	-	1912	906
CON19	_	1954	923
CON20	_	1944	923
CON21	-	2493	1177
CON22	-	4209	2065
ON1	25.4	50	18
ON2	17.5	31	11
ON3	2.5	6	2
ON4	4.7	9	3
ON5	9.4	18	7
ON6	2.3	8	4
ON8	12.2	27	9
ON9	25.5	41	14
ON10	11.4	24	8
ON11	10.0	19	7
ON12	11.6	23	8
ON13	12.0	23	8
ON14	3.5	6	2
ON15	22.5	42	15
ON16	11.5	23	8
ON17	9.1	20	7
ON18	20.3	31	10
ON19	6.4	12	4
ON20	6.6	12	4
ON21	22.3	34	12
ON22	8.5	18	6
PIC-B*	282.2	442	205

^{*}See Figure 5

^{**}The HEC-1 node shown identifies the controlling concentration point for the associated facility and is located upstream of this facility due to decreasing peak flow with increasing tributary area caused by storm distribution transitions, depth area reduction factors, or attenuation of flow for routing.

The existing conditions flow rate of 4,720 cfs (Concentration Point CC57B-4) conveyed to the CCRFCD Facilities APSO 0020 and APSO 0000 is slightly greater (<2%) than the 2013 MPU flow rate of 4,628 cfs shown at this location. The increase in flow rate is due to the increase in the CN values as a result of the updated soils classification for the site, and project specific hydrology revisions within the area bounded by Alta Drive, Rampart Boulevard, Charleston Boulevard and Hualapai Way.

VII. PROPOSED CONDITIONS

The Seventy will be mass graded and the proposed onsite storm drain improvements will be constructed during proposed conditions. Proposed conditions drainage patterns are similar to existing conditions. Figure 6A depicts the subbasins and drainage patterns used in the proposed conditions hydrologic analysis. The results of the Proposed Conditions HEC-1 model are summarized in Table 2. A copy of the Proposed Conditions HEC-1 model output is included in Appendix A.

TABLE 2 SUMMARY OF PROPOSED CONDITIONS HEC-1 MODEL			
SB OR CP ¹	AREA (AC)	100 YR (CFS)	10 YR (CFS)
57B-1	31.1	80	40
57B-1A	28.4	54	20
57B-1B	19.3	51	25
57B-1C	0.6	2	1
57B-2A	6.3	14	6
57B-2B	3.0	8	3
57B-2C	1.7	5	2
57B-2D	5.7	16	7
57B-2E	14.5	42	19
57B-2F	57.8	147	69
57B-2G1	1.6	5	2
57B-2G2	4.6	12	5
57B-2H1	18.6	32	13
57B-2H2	10.0	21	9
57B-2I	4.6	12	5
57B-3	30.8	63	28
57B-3A	16.6	36	14
57B-3B	32.8	66	25
57B-3C	4.4	11	4
57B-3D	11.8	26	11
57B-3E	16.0	32	13
57B-3F	7.4	17	7
57B-3G	1.5	4	2
57B-4	82.7	202	101
57B-4B	7.1	24	13

B OR CP ¹	AREA (AC)	D CONDITIONS H 100 YR (CFS)	10 YR (CFS)
57B-4C	7.8	23	12
C12B*	-	2134	990
	_	56	26
C57B-2E	-	259	127
C57B-4	-	47	25
C57B-4C	-	4673	2326
CC57B-4	-	2128	1025
CCON10	-	36	14
CCON6	-	1933	913
CCON18R		1895	900
CCPIC-A*		2476	1169
CDON2	-	4177	2058
CDON3	-	4177**	2059
CDON4	-		32
CON1	-	86	55
CON2	-	164	65
CON3R	-	191	8
CON6	-	18	
CON8	-	54	19
CON9	-	2120	1012
CON10	-	2120**	1015
CON11R		2130	1026
CON12	-	83	36
CON13	-	118	49
CON14	-	174	79
CON15R	-	344	142
CON16R	-	364	149
CON18R	-	1910	905
CP19	-	1933**	920
CP20	_	1933**	920
CPPH1	-	2450	1153
DON1	10.8	34	18
DON2	19.5	60	31
DON3	21.1	65	34
DON4	17.4	44	23
ON1	25.4	50	18
ON2	17.5	31	11
ON3R	4.1	9	3
ON5	9.4	18	7
ON6	2.3	8	4
ON8	12.2	27	9
ON9	25.5	41	14
ON10	11.4	24	8
	5.1	11	4
ON11R	11.6	23	8
ON12	12.0	23	8
ON13		6	2
ON14 ON15R	3.5 21.5	41	14

TABLE 2 SUMMARY OF PROPOSED CONDITIONS HEC-1 MODEL								
SB OR CP1	AREA (AC)	100 YR (CFS)	10 YR (CFS)					
ON16R	10.9	23	8					
ON18R	18.5	28	10					
PIC-B*	282.2	442	205					

¹See Figure 6A

The proposed conditions flow rate of 4,673 cfs (Concentration Point CC57B-4) conveyed to the CCRFCD Facilities APSO 0020 and APSO 0000 is slightly lower than the existing conditions flow rate of 4,720 cfs. Additionally, the proposed conditions flow rate of 4,673 cfs is slightly greater (<1%) than the 2013 MPU flow rate of 4,628 cfs shown at this location. The increase in flow rate is due to the increase in the CN values for onsite subbasins as a result of the updated soils classification for the site and reducing the size of the onsite subbasins for project specific hydrology. The existing CCRFCD Facilities have adequate hydraulic capacity to convey proposed conditions flow rates from the site to the existing Angel Park Detention Basin.

^{*}Referenced Subbasin/Concentration Point from 2013 MPU

^{**}The HEC-1 node shown identifies the controlling concentration point for the associated facility and is located upstream of this facility due to decreasing peak flow with increasing tributary area caused by storm distribution transitions, depth area reduction factors, or attenuation of flow for routing.

FIG6A

Onsite Mass Grading

Proposed onsite drainage patterns and rough grading are depicted on Figure 6B. Subbasins impacting the proposed rough graded channels have been prorated to determine the specific flow rates to the proposed rough graded channel sections. The prorated flows are based on the total cfs per acre of tributary area. Prorated flows are summarized on Table 3.

TABLE 3 PROPOSED CONDITIONS PRORATED FLOW SUMMARY Proposed Onsite Subbasins									
Subbasin ¹	Q ₁₀₀ (cfs)	Area (acres)	cfs/acre						
DON3	04.4								
Propo	sed Onsite F	Prorated Subbas	ins						
Subbasin*	Q ₁₀₀ (cfs)	Area (acres)	cfs/acre						
DON3A	6	1.9	3.08						
DON3B	23	7.4	3.08						
DON3C	11.0								
TOTAL	65	21.1	NA						

¹See Figures 6A and 6B.

The onsite rough graded ditches are summarized in Table 4. Ditch calculations have been included in Appendix B.

	TABLE 4 100-YEAR ROUGH GRADING DITCH CHARACTERISTICS											
Ditch ¹	Min Slope (%)	Q ₁₀₀ (cfs)	Depth of flow (ft)	Velocity (ft/s)	Bottom Width (ft)	Type	Side Slopes	Lining D50 (in)	Min Depth (ft)	Tributary		
Section A	0.65	44	0.54	2.91	24	Trap	9.5:1/5:1	N/A	1.50	DON4		
	1.20	44	0.33	2.97	42	Trap	9:1/9:1	N/A	1.50	DON4		
Section B Section C	5.85	59	0.33	4.21	42	Trap	3:1/2:1	12	1.50	DON3B + DON3C DON3B +		
Section D	4.28	59	0.36	3.81	42	Trap	3:1/3:1	12	1.50	DON3C		
Section E	0.50	60	1.08	3.60	10	Trap	8:1/2:1	N/A	2.00	DON2		
Section F	0.73	60	1.07	4.64	10	Trap	2:1/2:1	N/A	2.50	DON2		
	0.73	34	0.80	3.55	10	Trap	3:1/2:1	N/A	2.00	DON1		
Section G Section H (north)	6.15	33	0.56	3.95	0	V- ditch	3:1/50:1	12	2.00	1/2 DON2		
Section H (south)	6.15	33	0.57	3.97	0	V- ditch	2:1/50:1	12	2.00	1/2 DON2		

¹See Figures 6A and 6B.

A site visit was performed to determine drainage patterns within APNs 138-32-311-002, 138-32-311-004, and 138-32-311-005. The total area tributary to site from these parcels was determined to be approximately 0.6 acres. The tributary area from these parcels is shown as Subbasin 57B-1C in the existing and proposed conditions hydrologic analyses. Subbasin 57B-1C generates 2 cfs during the 100-year storm event. The total flow is discharged at three locations along the boundary of the site. The discharge from the offsite parcel includes flow from an existing block wall opening, sheet flow from the site, and discharge from a curb opening. An NDOT Type 2 Drop Inlet and stub is proposed to intercept flow from the block wall opening. Two additional 18-inch RCP capped storm drain stubs are provided to intercept flows from these areas in the future. The future improvements for the site will safely convey flows from these adjacent parcels to the onsite storm drain system.

VIII. ULTIMATE CONDITIONS

The Two Fifty and all offsite areas are fully developed during ultimate conditions. Due to the size of the future estate lots (minimum 1 to 5± acres), curve numbers for the future One Eighty subbasins will be less than or equal to the curve numbers presented in this report for existing and proposed conditions. A separate analysis for ultimate conditions was not warranted since all offsite areas tributary to the site upstream of the overall Two Fifty development at Hualapai Way and Charleston Boulevard are already developed in proposed conditions. The proposed conditions flow rate of 4,673 cfs at CC57B-4 is considered to be the ultimate conditions flow rate conveyed to the dual (2) - 12-foot wide by 12-foot high RCB located at the Rampart Boulevard and Alta Drive intersection for the purposes of this report.

IX. STORM DRAIN FACILITIES AND PROTECTION

All proposed flood control facilities have been shown on Figure 7 and the plans included herewith. The design for the proposed facilities has been based on proposed conditions flow rates. Design of the storm drain facilities within the future One Eighty development have been based on normal depth calculations. Proposed mainline and lateral pipe sizes within the future One Eighty development were calculated using normal depth and have been upsized by 6 inches in diameter to provide for losses and future design flexibility. Proposed mainline and lateral RCB sizes include 1 foot of freeboard to account for storm

	FL	OOD PROTECTION	ON FACIL	ITIES	
LOCATION	Q ₁₀₀ (cfs)	FACILITY	TRIBUTARY	MPU Q ₁₀₀ (cfs)	MPU FACILITY
1	2,130	20'x9' RCB; 14' DEEP MIN SUMP; D50=12";T=24"	CCON10	-	-
2	2,130	15'x9' RCB	CON11R	2384	APSP 0067
3	344	72" RCP; 11.0' DEEP MIN SUMP; D50=12";T=24"	ON15R	-	-
4	23	48" RCP; 3.0' DEEP MIN SUMP; D50=12";T=24"	ON16R	-	-
5	364	72" RCP	CON16R	-	-
6	191	72" RCP	CON3R	-	-
7	2,450	14'x9' RCB	CPPH1	2384	APSP 0067
	34	48" RCP; 3.5' DEEP MIN SUMP; D50=12";T=24"	DON1	-	-
8B	60	48" RCP; 4.5' DEEP MIN SUMP; D50=12";T=24"	DON2	-	-
9A	6	24" RCP; 3.5' DEEP MIN SUMP; D50=12";T=24"	DON3A	-	-

LOCATION	Q ₁₀₀ (cfs)	FACILITY	TRIBUTARY	MPU Q ₁₀₀ (cfs)	MPU FACILITY
9B	2476	14'x9' RCB	CDON2	-	-
10A	23	48" RCP; 3.5' DEEP MIN SUMP; D50=12";T=24"	DON3B	-	-
10B	36	48" RCP; 4' DEEP MIN SUMP; D50=12";T=24"	DON3C	-	1
11	4,177	14'x12' RCB	CDON3	4,628	APS0 0050
12	4,177	14'x12' RCB	CDON3	4,628	APS0 0050
12A	22	24" RCP CAPPED	N/A	-	-
12B	22	24" RCP CAPPED	N/A	-	ı
13A	22	36" RCP; 3.5' DEEP MIN SUMP; D50=12";T=24"	1/2 DON4		-
13B	22	36" RCP; 3.5' DEEP MIN SUMP; D50=12";T=24"	1/2 DON4	-	-
14	1,910	20'x9' RCB; 12' DEEP MIN SUMP; D50=12";T=24"	CON18R	-	-

LOCATION	Q ₁₀₀ (cfs)	FACILITY	TRIBUTARY	MPU Q ₁₀₀ (cfs)	MPU FACILITY
15	1,933	10'x8' RCB	CON18R	2,004	APP2 0000
16A	54	EX. CONCRETE DRAINAGE EASEMENT	57B-1A	-	-
16B	54	PROPOSED CONCRETE FLUME	57B-1A	-	ı
16C	54	48" RCP	57B-1A	-	1
17	51	42" RCP; 4.5' DEEP MIN SUMP; D50=12";T=24"	57B-1B	-	ī
18	1,933	10'x8' RCB	CCON18R	2,004	APP2 0000
19	2	18" RCP; 0.5' DEEP MIN AREA DRAIN; NDOT TYPE 2A	1/2 57B-1C	-	į
20	1,933	10'x8' RCB	CP20	2,004	APP2 0000
21	2	18" RCP; STUB (PLUGGED)	N/A	-	-
22	1,933	10'x8' RCB	CP20	2,004	APP2 0000

LOCATION	Q ₁₀₀ (cfs)	FACILITY	TRIBUTARY	MPU Q ₁₀₀ (cfs)	MPU FACILITY
23	-	-	-	442	APP1 0000
24	-	-	-	4,628	APSO 0020
25	191	54" RCP	CON3R	-	
26	164	54" RCP	CON2	-	
27	54	36" RCP	CON8	2,384	APSO 0067
28	2,128	11'x9' RCB	CCON10	-	
29	344	66" RCP	CON15R	-	
30	118	48" RCP	CON13	-	
31	1,910	11'x8' RCB	CON8R	2,004	APP2 0000

LOCATION	Q ₁₀₀ (cfs)	FACILITY	TRIBUTARY	MPU Q ₁₀₀ (cfs)	MPU FACILITY
23	-	-	-	442	APP1 0000
24		-	-	4,628	APSO 0020
25	191	54" RCP	CON3R	-	
26	164	54" RCP	CON2	-	
27	54	36" RCP	CON8	2,384	APSO 0067
28	2,128	11'x9' RCB	CCON10	-	
29	344	66" RCP	CON15R	-	
30	118	48" RCP	CON13	-	
31	1,910	11'x8' RCB	CON8R	2,004	APP2 0000

DRAWING FIG7

STORM DRAIN FACILITIES

drain losses. Normal depth calculations with proposed future slopes for The One Eighty recommended facilities have been included in Appendix B. Note that detailed hydraulic analysis for The One Eighty proposed facilities will be required in future technical drainage study submittals for this project. Hydraulic calculations for the recommended facilities have been included in Appendix B.

The Seventy proposed Mainline 1 RCB extends the existing CCRFCD Facility APSO 0020 dual (2) - 12-foot wide by 12-foot high RCB's in Rampart Boulevard approximately 3,500 linear feet west through the proposed site. Mainline 1 consists of an approximately 30 linear feet junction structure; 1,560 linear feet of 14-foot wide by 12-foot high RCB; an 87 linear feet junction structure; 1,345 linear feet of 14-foot wide by 9-foot high RCB; 415 linear feet of 15-foot wide by 9-foot high RCB; a 12 linear feet transition structure; and 49 linear feet of 20-foot wide by 9-foot high RCB improved inlet. Mainline 1 will collect and convey offsite flows generated west and south of the project site northeast to the existing dual (2) - 12-foot wide by 12-foot high RCB located at the Rampart Boulevard and Alta Drive intersection.

Mainline 2 consists of approximately 1,425 linear feet of 10-foot wide by 8-foot high RCB; a 12 linear feet transition structure; and 49 linear feet of 20-foot wide by 9-foot high RCB improved inlet. Mainline 2 will collect and convey offsite flows generated south of the project site north to Mainline 1.

Hydraulic modeling for the proposed RCB storm drain mainlines and RCP laterals were performed with the CIVILDESIGN Corp. WSPGW Water Surface Pressure Gradient Package (Reference 8, hereinafter referred to as WSPGW). Copies of the WSPGW models for the proposed storm drain facilities have been included in Appendix B. Electronic copies of the models have been included on CD in the Appendix. Note that the flows at the concentration points nodes from the proposed conditions HEC-1 Model were used to model the proposed storm drain mainlines. Lateral storm flows in the mainline WSPGW models were adjusted, so the 100-year storm flows in downstream reaches match the concentration point peak flows along the mainline. The WSPGW models labeled ""MAIN1" and "MAIN2" are for the proposed conditions Mainline 1 and Mainline 2 storm drain mainlines, respectively. A summary of the WSPGW results have been shown on Figure 8. The results of the WSPGW Mainline 1 and 2 models are summarized in Tables 5A and 5B, respectively.

	WS	PGW MOI	T/	ABLE 5A NE 1 SUN	MARY - M	AIN1.WSW	I
Station*	Invert (ft)	Depth (ft)	WSE (ft)	Q Total (cfs)	Velocity (fps)	Froude	Facility
-9195.67	2666.750	4.619	2671.37	4177	36.17	2.97	EXISTING (2) – 12'X12'RCB
-9165.73	2668.537	9.477	2678.01	4177	31.48	1.80	TRANSITION STRUCTURE
-9119.17	2671.317	10.738	2682.06	4177	27.78	1.49	14'X12' RCB
-9030.84	2672.200	10.624	2682.82	4177	28.08	1.52	14'X12' RCB
-8709.64	2675.412	10.063	2685.48	4177	29.65	1.65	14'X12' RCB
-8668.38	2675.825	9.977	2685.80	4177	29.91	1.67	14'X12' RCB
-8634.80	2676.161	9.904	2686.06	4177	30.13	1.69	14'X12' RCB
-8544.46	2677.064	9.694	2686.76	4177	30.78	1.74	14'X12' RCB
-8492.25	2677.586	9.566	2687.15	4177	31.19	1.78	14'X12' RCB
-7909.64	2683.412	7.828	2691.24	4177	38.11	2.40	14'X12' RCB
-7776.91	2684.766	7.381	2692.15	4177	40.42	2.62	14'X12' RCB
-7745.02	2686.243	7.473	2693.72	4177	39.93	2.57	14'X12' RCB
-7605.95	2692.682	8.017	2700.70	4177	37.22	2.32	14'X12' RCB
-7519.01	2698.724	4.391	2703.12	2476	40.27	3.39	TRANSITION STRUCTURE
-7361.10	2710.678	5.164	2715.84	2476	34.25	2.66	14'X9' RCB
-7235.12	2715.415	5.421	2720.84	2476	32.62	2.47	14'X9' RCB
-7123.51	2719.611	5.794	2725.41	2476	30.52	2.23	14'X9' RCB
-6922.57	2727.166	7.785	2734.95	2476	22.72	1.43	14'X9' RCB
-6835.12	2728.041	7.860	2735.90	2476	22.50	1.41	14'X9' RCB

	TABLE 5A WSPGW MODEL MAINLINE 1 SUMMARY - MAIN1.WSW										
Station*	Invert (ft)	Depth (ft)	WSE (ft)	Q Total (cfs)	Velocity (fps)	Froude	Facility				
-6748.98	2728.902	7.961	2736.86	2476	22.22	1.39	14'X9' RCB				
-6743.98	2728.952	7.647	2736.60	2450	22.88	1.46	14'X9' RCB				
-6435.12	2732.041	7.948	2739.99	2450	22.02	1.38	14'X9' RCB				
-6191.62	2734.476	8.862	2743.34	2450	19.75	1.17	14'X9' RCB				
-6178.96	2734.602	9.000	2743.60	2450	19.44	1.14	14'X9' RCB				
-6173.96	2734.651	11.911	2746.56	2130	15.78	0.93	JUNCTION STRUCTURE				
-6148.62	2734.902	11.822	2746.72	2130	15.78	0.93	15'x9' RCB				
-6138.29	2735.004	11.786	2746.79	2130	15.78	0.93	15'x9' RCB				
-6058.18	2735.797	12.026	2747.82	2130	15.78	0.93	15'x9' RCB				
-5813.21	2738.222	11.166	2749.39	2130	15.78	0.93	15'x9' RCB				
-5759.19	2738.757	11.408	2750.17	2130	15.78	0.93	15'x9' RCB				
-5747.19	2738.876	13.460	2752.34	2130	11.83	0.70	TRANSITION STRUCTURE				
-5698.19	2739.361	13.129	2752.49	2130	11.83	0.70	20'x9' RCB				

*See Figure 8.

	TABLE 5B WSPGW MODEL MAINLINE 2 SUMMARY - MAIN2.WSW										
Station*	Invert (ft)	Depth (ft)	WSE (ft)	Q Total (cfs)	Velocity (fps)	Froude	Facility				
-7519.01	2698.462	4.749	2703.210	1933	40.71	3.29	10'x8' RCB				
-7413.73	2706.021	5.029	2711.050	1933	38.44	3.02	10'x8' RCB				
-7319.42	2712.792	5.450	2718.242	1933	35.47	2.68	10'x8' RCB				

	WSF	PGW MODE	TAB	LE 5B E 2 SUMM	ARY - MAIN	2.WSW	
Station*	Invert (ft)	Depth (ft)	WSE (ft)	Q Total (cfs)	Velocity (fps)	Froude	Facility
-7198.35	2721.485	6.644	2728.129	1933	29.10	1.99	10'x8' RCB
-7059.47	2724.374	6.614	2730.988	1933	29.23	2.00	10'x8' RCB
-6981.72	2725.991	6.591	2732.582	1933	29.33	2.01	10'x8' RCB
-6923.10	2727.210	6.571	2733.781	1933	29.42	2.02	10'x8' RCB
-6798.35	2729.805	6.517	2736.322	1933	29.66	2.05	10'x8' RCB
-6749.99	2730.821	6.494	2737.315	1933	29.77	2.06	10'x8' RCB
-6739.89	2731.030	6.488	2737.518	1933	29.79	2.06	10'x8' RCB
-6609.84	2733.736	6.400	2740.136	1933	30.20	2.10	10'x8' RCB
-6526.95	2734.565	6.068	2740.633	1933	31.86	2.28	10'x8' RCB
-6230.91	2740.485	5.194	2745.679	1910	36.77	2.84	10'x8' RCB
-6143.49	2748.869	6.290	2755.159	1910	30.37	2.13	10'x8' RCB
-6094.81	2753.537	8.000	2761.537	1910	23.88	1.49	10'x8' RCB
-6083.24	2754.647	15.899	2770.546	1910	10.61	0.62	TRANSITION STRUCTURE
-6052.25	2757.619	13.190	2770.809	1910	10.61	0.62	20'x9' RCB
-6034.02	2759.370	11.723	2771.094	1910	10.61	0.62	20'x9' RCB

*See Figure 8.

Mainline 1

The approved WSPGW model for the existing dual (2) - 12-foot wide by 12-foot high RCBC (CCRFCD Facility APSO 0000) storm drain downstream of the existing dual (2) -12-foot wide by 12-foot high RCBC (CCRFCD Facility APSO 0020) at the Rampart Boulevard and Alta Drive intersection has been referenced from the Queens Borough Culvert Study. Please note that the approved Queens Borough Culvert Study referenced a design flow rate of 4,497 cfs from the 2002 MPU. As previously stated, the 2013 MPU shows a flow rate of 4,628 cfs and the proposed conditions HEC-1 model presented in this report shows a proposed 100-year flow rate of 4,672 cfs. approved Queens Borough Culvert Study WSPGW model has been extended south with this report to include the existing CCRFCD Facility APSO 0020 and the proposed Mainline 1 storm drain. The model also includes the junction where an existing 60-inch RCP and 72-inch RCP connect to APSO 0020 in Rampart Boulevard and the proposed condition flow rates at pertinent HEC-1 nodes. Inverts used in the hydraulic calculations for the existing dual (2) - 12-foot wide by 12-foot high RCBC are based on survey and as-built information. The WSPGW Model Stations from the Queens Borough Culvert Study have been included in the Mainline 1 Model and converted to match the proposed Mainline 1 Stationing. The WSPGW Model Station Conversion has been summarized in Table 6. Pertinent referenced material from the Queens Borough Culvert Study has been included in Appendix C.

TABLE 6 WSPGW MODEL STATION CONVERSION SUMMARY – MAIN1.WSW					
WSPGW Stations Referenced from Queens Borough Culvert Study	MAIN 1 WSPGW Stations*				
-3625.00	-12270.67				
-3550.00	-12195.67				
-3500.00	-12145.67				
-3401.01	-12046.68				
-3350.81	-11996.48				
-3325.95	-11971.62				
-3315.95	-11961.62				
-3225.64	-11871.31				
-3223.32	-11868.99				
-3152.70	-11798.37				
-3135.29	-11780.96				

WSPGW MODEL CONVERSION SI	TABLE 6 WSPGW MODEL STATION CONVERSION SUMMARY – MAIN1.WSW						
WSPGW Stations Referenced from Queens Borough Culvert Study	MAIN 1 WSPGW Stations*						
-3049.99	-11695.66						
-2906.52	-11552.19						
-2433.63	-11079.30						
-2318.22	-10963.89						
-2200.00	-10845.67						
-1733.86	-10379.53						
-1565.00	-10210.67						
-1000.00	-9645.67						

*See Figure 8.

The Mainline 1 model shows the existing CCRFCD Facility APSO 0000 has adequate capacity to convey proposed conditions 100-year storm event flow rates to the existing Angel Park Detention Basin. Proposed flow depths and flow velocities within the existing dual (2) - 12-foot wide by 12-foot high RCB are comparable to the approved Queens Borough Culvert Study Design. Approximately 2,819 linear feet of the proposed Mainline 1 RCB storm drain hydraulic grade line will be more than 1-foot below the RCB soffit between the connection to the dual (2) - 12-foot wide by 12-foot high RCB and approximately 197 linear feet downstream of the junction structure with the two 72-inch RCP laterals that connect to the mainline at WSPGW Station -6176.46. The hydraulic grade line is 2.4 feet to 2.9 feet above the 15-foot wide by 9-foot high RCB mainline for approximately 417 linear feet south of the junction with the two 72-inch RCP laterals that connect to Mainline 1 at WSPGW Station -6176.46. However, the hydraulic grade line will be more than 1-foot below finished grade elevation along the storm drain mainline. The maximum flow velocity of 41.04 feet per second occurs in Mainline 1 at WSPGW Station -7519.00.

Per Section 705.7.1.2 in the Manual, all concrete lining shall have a minimum thickness of 7 inches for flow velocities 30 feet per second and greater. Additionally, the pre-cast RCB will have an additional 1-inch of cover over the rebar and a 6,000 psi concrete strength where velocities exceed 25 feet per second.

Mainline 2

Approximately 1,400 linear feet of the proposed Mainline 2 RCB hydraulic grade line will be more than 1-foot below the RCB soffit.

The maximum flow velocity of 40.71 feet per second occurs in Mainline 2 just upstream of the connection to the Mainline 1 junction structure. Per Section 705.7.1.2 in the Manual, all concrete lining shall have a minimum thickness of 7 inches for flow velocities 30 feet per second and greater. Additionally, the pre-cast RCB will have an additional 1-inch of cover over the rebar and a 6,000 psi concrete strength where velocities exceed 25 feet per second.

WSPGW models have been included for proposed laterals extending to collect flows from future onsite development and existing offsite developments. Please refer to tables on Figure 7 for facility flows and sizes.

The proposed onsite ditches will convey the existing flows with a minimum of 1-foot of freeboard. Maximum slope was selected to verify velocity. Flows from the proposed ditches will be conveyed into the proposed Mainline 1 and 2 storm drain systems. Riprap (Minimum: $d_{50} = 12$ inches, Thickness = 24 inches) has been provided at the lateral sump locations up to the ponding depth, determined by an inlet control calculation. The inlet control calculations have been provided in Appendix B.

Area drains have been provided to collect flows at some of the sump locations. Calculations for the area drains have been included in Appendix B.

X. FEMA CONDITIONAL LETTER OF MAP REVISION (CLOMR)

Hydrologic Summary

As a part of this project development, a CLOMR and Letter of Map Revision (LOMR) will be processed with FEMA to remap the Special Flood Hazard Area (SFHA) that currently routes through the site.

Since this project re-evaluates the existing hydrologic analysis for the subject wash, the project specific existing and proposed condition hydrologic analysis was used as the

effective hydrologic model to determine peak flow rates for use in establishing the limits of the revised SFHA.

Existing Condition

See Figure 9 - Existing Conditions HEC-RAS X-Section Map. The main wash through the site labeled Main 1 represents the major conveyance corridor for the mapped Zone A SFHA overlaying the site. Several fingers of the SFHA extend out from Main 1, and will be removed from the SFHA with the CLOMR submittal connected with this study since they are either remnant washes cut-off by upstream improvements or ineffective flow areas inundated by flows in the Main 1. Please note that the existing SFHA does not impact existing development.

Main 1

100-Year Flow at Upstream End = 2,128 cfs (Concentration Point CCON10)

This reach will be the remaining conveyance corridor of the mapped SFHA upon completion of the LOMR remapping.

North Finger

100-Year Flow = 195 cfs (Concentration Point CON4)

A finger of SFHA extends up an existing wash north of Main 1 for approximately 1,000 linear feet. Since this wash is a remnant wash, cut off by Hualapai Way and no longer conveying the historical flows originating from west of Hualapai Way, this finger will be removed from the SFHA. The wash located within an existing golf course conveys local drainage areas, and does not impact existing development.

South Finger

100-Year Flow = 368 cfs (Concentration Point CON17)

Similar to the North Finger, a finger of SFHA extends up an existing wash south of Main 1 for approximately 4,000 linear feet. This wash is also a remnant wash, cut off by Hualapai Way and no longer conveying the historical flows originating from west of Hualapai Way, and will be removed from the SFHA. The wash located within an existing golf course conveys local drainage areas, and does not impact existing development.

LEGEND

EFFECTIVE FLOODPLAIN LIMITS EXISTING CONDITION INUNDATION LIMITS

2147 CFS **Q100 FLOW**

CCON10 **HEC-1 CONCENTRATION POINT**

- FLOW DIRECTION

MAIN1 HEC-RAS REACH

(2200) HEC-RAS STATION LABEL

----- HEC-RAS CROSS SECTION

		MA	AIN 1 HEC-RAS	STAT	TON SI	JMMARY 1	ΓABLE	
Sta	Q	FL Elevation	W.S. Elevation	Depth	Vel	Top Width	Froude #	Notes
	(cfs)	(ft)	(ft)	(ft)	(ft/s)	(ft)		
2700	2128	2756.00	2760.89	4.89	10.46	60.70	1.01	Existing Wash
2600	2128	2752.00	2758.31	6.31	9.90	71.48	1.01	Existing Wash
2500	2128	2748.00	2754.37	6.37	10.20	66.36	1.01	Existing Wash
2400	2128	2747.00	2751.80	4.80	9.95	69.59	1.00	Existing Wash
2300	2128	2744.00	2749.36	5.36	11.68	43.51	1.01	Existing Wash
2200	2128	2740.00	2745.49	5.49	11.33	47.51	1.00	Existing Wash
2100	2128	2736.00	2742.08	6.08	11.35	46.89	1.00	Existing Wash
2000	2128	2729.00	2735.65	6.65	11.69	43.15	1.00	Existing Wash
1900	2128	2724.00	2733.14	9.14	8.94	43.40	0.67	Existing Wash
1800	2128	2719.00	2732.45	13.45	8.8	57.08	0.75	Existing Wash
1700	2227	2716.00	2728.08	12.08	15.22	20.20	1.00	Existing Wash
1600	2227	2711.00	2725.34	14.34	11.67	45.98	1.01	Existing Wash
1500	2472	2707.00	2720.77	13.77	14.77	24.93	1.00	Existing Wash
1400	2472	2702.00	2713.84	11.84	14.09	28.74	1.00	Existing Wash
1300	2472	2699.00	2704.43	5.43	11.42	53.98	1.01	Existing Wash
1200	2472	2695.00	2700.84	5.84	12.19	44.49	1.01	Existing Wash
1100	2472	2691.00	2697.30	6.30	12.57	40.56	1.01	Existing Wash
1000	2472	2687.00	2692.52	5.52	11.89	47.97	1.01	Existing Wash
900	2472	2683.00	2689.15	6.15	12.63	39.48	1.00	Existing Wash
800	2493	2679.00	2685.65	6.65	12.43	41.88	1.00	Existing Wash
700	2493	2676.00	2685.62	9.62	7.03	49.85	0.46	Existing Wash
600	2493	2674.00	2685.89	11.89	4.01	133.33	0.24	Existing Wash
500	4209	2672.00	2685.74	13.74	4.33	143.10	0.29	Existing Wash
400	4209	2671.00	2685.77	14.77	3.56	213.18	0.27	Existing Wash
300	4209	2669.00	2685.77	16.77	3.04	178.22	0.19	Existing Wash
200	4209	2668.00	2684.83	16.83	7.74	110.66	0.62	Existing (2)12x12 RC

	MAIN 2 HEC-RAS STATION SUMMARY TABLE									
Sta	Q	FL Elevation	W.S. Elevation	Depth	Vel	Top Width	Froude #	Notes		
	(cfs)	(ft)	(ft)	(ft)	(ft/s)	(ft)				
5400	1912	2780.00	2783.62	3.62	9.02	85.33	1.01	Existing Wash		
5300	1912	2778.00	2781.81	3.81	10.54	67.57	1.13	Existing Wash		
5200	1912	2764.00	2766.49	2.49	27.67	46.38	3.99	Existing Wash		
5100	1912	2759.00	2762.99	3.99	16.44	44.34	1.79	Existing Wash		
5000	1912	2758.00	2762.37	4.37	12.44	70.25	1.48	Existing Wash		
4900	1912	2756.00	2760.64	4.64	10.50	63.82	1.09	Existing Wash		

Main 2 Finger

100-Year Flow = 1,944 cfs (Concentration Point CON20)

A short finger extends south near the downstream end of the project at Rampart Boulevard for approximately 300 linear feet. This finger is located completely with the developed portion of the site and will be removed from the SFHA. The flows in this wash will be conveyed and contained in the Mainline 2 underground storm drain to Rampart Boulevard.

Several flow changes occur in the Main 1 wash as the above mentioned fingers combine with Main 1. Table 7 summarizes the effective flow rates used through the Main 1 wash to establish the effective water surface elevations through the Main 1 SFHA used to compare with the proposed condition water surface elevations.

TABLE 7 EFFECTIVE FLOW RATES – MAIN 1 WASH						
HEC-RAS River Station*	Effective Flow Rate (cfs)					
2700	2,128					
1700	2,227					
1500	2,472					
800	2,493					
500	4,209					

^{*}See Figure 9.

Proposed Condition

See Figure 10 - Proposed Conditions HEC-RAS X-Section Map and Figure 11 - CLOMR Workmap. In the proposed condition, the portion within the project site will be contained within underground storm drain. The proposed floodplain will tie into the existing floodplain approximately 700 linear feet west of the project site as shown on the CLOMR Workmap. Table 8 summarizes the effective flow rates used through the Main 1 wash to establish the effective water surface elevations through the Main 1 SFHA used to compare to proposed condition water surface elevations.

LEGEND

EFFECTIVE FLOODPLAIN LIMITS PROPOSED CONDITION INUNDATION LIMITS

2147 CFS **Q100 FLOW**

CCON10 **HEC-1 CONCENTRATION POINT**

-- FLOW DIRECTION

MAIN1 HEC-RAS REACH

(2200) HEC-RAS STATION LABEL

----- HEC-RAS CROSS SECTION

	MAIN 1 HEC-RAS STATION SUMMARY TABLE							
Sta	Q	FL Elevation	W.S. Elevation	Depth	Vel	Top Width	Froude #	Notes
	(cfs)	(ft)	(ft)	(ft)	(ft/s)	(ft)		
2700	2128	2756.00	2760.90	4.90	10.45	60.71	1.01	Existing Wash
2600	2128	2752.00	2758.31	6.31	9.89	71.49	1.00	Existing Wash
2500	2128	2748.00	2754.39	6.39	10.14	66.45	1.01	Existing Wash
2400	2128	2739.36	2752.49	13.13	3.16	90.29	0.20	Proposed 20x9 RCB

		MAIN 2 HEC-RAS STATION SUMMARY TABLE									
	Sta	Q	FL Elevation	W.S. Elevation	Depth	Vel	Top Width	Froude #	Notes		
		(cfs)	(ft)	(ft)	(ft)	(ft/s)	(ft)				
	5400	1910	2780.00	2783.62	3.62	9.02	85.32	1.01	Existing Wash		
	5300	1910	2778.00	2781.81	3.81	10.53	67.56	1.13	Existing Wash		
	5200	1910	2772.00	2774.34	2.34	18.71	54.29	2.40	Existing Wash		
	5100	1910	2764.00	2771.06	7.06	3.44	129.63	0.29	Existing Wash		
ĺ	5000	1910	2759.39	2771.09	11.70	2.48	127.62	0.18	Proposed 20x9 RCB		

TABLE 8 EFFECTIVE FLOW RATES – MAIN 1 WASH AND RCB							
HEC-RAS River Station*	WSPGW Station**	Effective Flow Rate (cfs)					
2700	-	2,128					
_	-5698.19	2,132					
_	-6194.12	2,452					
-	-6702.00	2,478					
-	-7588.63	4,179					

^{*}See Figure 10. **See Figure 11.

Hydraulic Modeling

Hydraulic modeling for the proposed channel improvements were performed within the U.S. Army Corps of Engineers HEC-RAS River Analysis System computer program version 4.1.0 (Reference 9). The HEC-RAS model outputs have been provided in Appendix B. Electronic copies of the models have been included on CD.

Existing Condition

The limits of the hydraulic modeling of Main 1 begins approximately 700 feet upstream of the western property line at Station 2700 and extend approximately 3,900 linear feet, east through an unnamed wash through an existing golf course, and terminating at the existing dual (2) - 12-foot wide by 12-foot high RCBCs at the intersection of Rampart Boulevard and Alta Drive at Station 200. This project re-evaluates the existing hydraulic analysis of the unnamed wash. The base cross section geometry used in the hydraulic modeling was determined from existing topography with 1-foot contour intervals. A "sub-critical" flow regime was analyzed for the wash. The starting water surface elevation of 2684.83 feet at Station 200 was determined based on a culvert inlet control calculation at the existing dual (2) - 12-foot wide by 12-foot high RCBCs at the intersection of Rampart Boulevard and Alta Drive (WSE = Invert of pipe + headwater depth = 2666.75 feet + 18.08 feet = 2684.83 feet). A copy of the inlet control calculation has been included in Appendix B.

Proposed Condition

The proposed improvements along the unnamed wash extend between Main 1 Stations 200 and 2400. The improvements consist of reinforced concrete box storm drain through the length of the project and tie into the existing dual (2) - 12-foot wide by 12-foot high RCB at the intersection of Rampart Boulevard and Alta Drive.

HEC-RAS was utilized for open channel and wash portions of the analysis. WSPGW was utilized to evaluate the water surface profile through proposed storm drain. The WSPGW computer program was selected to evaluate the storm sewer system in lieu of HEC-RAS due to its more relevant modeling approach for storm drain systems. Supporting WSPGW hydraulic models are included in Appendix B.

The resulting comparison between existing and proposed condition water surface elevations through the project are summarized in Table 9.

		MAIN 1 WAS	H - WATER SUR	TABL RFACE E		OMPARISON TA	BLE
	Existing Condition				Pro	oposed Conditio	n
Sta*	Q (cfs)	FL Elevation (ft)	W.S. Elevation (ft)	Q (cfs)	FL Elevation (ft)	W.S. Elevation (ft)	Rise in Water Surface Elevation Due to Development (ft)
2700	2,128	2756.00	2760.89	2,128	2756.00	2760.90	0.01
2600	2,128	2752.00	2758.31	2,128	2752.00	2758.31	0.00
2500	2,128	2748.00	2754.37	2,128	2748.00	2754.39	0.02
2400	2,128	2747.00	2751.80	2,128	2739.36	2752.49	0.69
2300	2,128	2744.00	2749.36				
2200	2,128	2740.00	2745.49				
2100	2,128	2736.00	2742.08				
2000	2,128	2729.00	2735.65				
1900	2,128	2724.00	2733.14				
1800	2,128	2719.00	2732.45				
1700	2,227	2716.00	2728.08				
1600	2,227	2711.00	2725.34				
1500	2,472	2707.00	2720.77	1% An	nual Chance	Flood Discharge (Contained in Storm
1400	2,472	2702.00	2713.84			Drain	
1300	2,472	2699.00	2704.43				
1200	2,472	2695.00	2700.84				
1100	2,472	2691.00	2697.30				
1000	2,472	2687.00	2692.52				
900	2,472	2683.00	2689.15				
800	2,493	2679.00	2685.65				
700	2,493	2676.00	2685.62				
600	2,493	2674.00	2685.89				

	TABLE 9 MAIN 1 WASH - WATER SURFACE ELEVATION COMPARISON TABLE									
	Ex	cisting Condi	tion		Pr	oposed Conditio	n			
Sta*	O FL WS Flevation		Q (cfs)	FL Elevation (ft)	W.S. Elevation (ft)	Rise in Water Surface Elevation Due to Development (ft)				
500	4,209	2672.00	2685.74							
400	4,209	2671.00	2685.77							
300 4,209 2669.00 2685.77										
200	4,209	2668.00	2684.83							

^{*}See Figures 9 and 10.

As shown in the table, the proposed improvements tie into the existing water surface elevation at the upstream end and tie into the existing storm drain facility at the downstream end that contains the 1% chance annual flood. The proposed water surface elevations do not exceed the existing water surface elevations by more than 1-foot, or are entirely contained within the proposed storm drain facility.

Mapping

The Effective FIRM is shown on Figure 3. The proposed revisions to the Effective FIRM take into account the proposed improvements along the unnamed wash and within the project. The improvements affect the Zone A area.

The upstream tie-in to the Effective FIRM Zone A is located at Station 2700. The upstream tie-in was based on a smooth transition from the proposed floodplain width to the effective floodplain width. The downstream tie-in to the Effective FIRM Zone A is located at the existing dual (2) - 12-foot wide by 12-foot high RCBCs at the intersection of Rampart Boulevard and Alta Drive at Station 200 where the 1% annual chance flood discharge is contained in storm drain downstream of the project site. The proposed FIRM revisions and tie-in locations are shown on Figure 11 - CLOMR Workmap and Figure 12 - Annotated FIRM.

In general, the proposed site grading and storm drain improvements are in conformance with existing drainage patterns and flow values presented in the 2013 MPU and Queens Borough Culvert Study. Therefore, the proposed project will not adversely impact any downstream properties or facilities.

XI. CONCLUSIONS AND RECOMMENDATIONS

- Methodology used in this report is in compliance with Clark County Regional Flood Control District (CCRFCD) criteria.
- 2. The project site is located within a FEMA-designated Special Flood Hazard Area (SFHA) Zone A. However, the 100-year flow (1% annual chance flood discharge) is contained within the proposed RCBs (Mainline 1 and Mainline 2) that transverse the site. Since the flows will be contained within the proposed RCBs, a CLOMR will be obtained from FEMA and a LOMR will be obtained from FEMA once construction of the facilities are substantially complete and functional.
- CCRFCD Facilities to be constructed with this project include: APSO 0050, APSO 0067 and APP2 0000.
- 4. The proposed improvements connect to existing CCRFCD Facility APSO 0020.
- Recommended storm drain facilities proposed with the project are shown on the attached grading plans.
- 6. The proposed storm drain will vary in size ranging from 18-inch RCP to 72-inch RCP and 10-foot wide by 8-foot high RCB to 14-foot wide by 12-foot high RCB connecting to the existing Rampart Boulevard dual (2) 12-foot wide by 12-foot high RCB culverts.
- 7. Methods used to calculate storm runoff and size facilities are in compliance with the Manual.
- 8. Proposed facilities have been sized based on proposed conditions flow rates.
- 9. Detailed hydraulic modeling of the proposed Mainline 1 and Mainline 2 from the western boundary of the project site to the existing culverts in Rampart Boulevard shows that the design flows will be contained within the proposed RCBs. The design flows are based on the Proposed Conditions HEC-1 Model flow of 4,673 cfs. The proposed RCB will convey the Proposed Conditions flow with freeboard.
- 10. Flows conveyed within the onsite Mainline 1 RCB will be discharged into the existing dual (2) 12-foot wide by 12-foot high RCBs in Rampart Boulevard located at the northeast corner of the project site.

- 11. Onsite storm drain laterals have been provided as part of this package to provide for future development of The Seventy and The Two Fifty.
- 12. Proposed onsite ditches/berms will convey onsite flows to be collected and conveyed by the proposed storm drain laterals.
- 13. Onsite area drains will be connected to the proposed onsite storm drain system that connects into the dual (2) 12-foot wide by 12-foot high RCBCs.
- 14. All future onsite finished floors will be designed as required by CLV Criteria.
- 15. The emergency overflow path for the project will be Rampart Boulevard.
- 16. The general drainage patterns and flow rates are in general agreement with those specified in the 2013 MPU and the previous Queens Borough Culvert Study.
- 17. Runoff generated from, or conveyed by, the project will not adversely impact any downstream properties and facilities.

XII. REFERENCES

- 1. G. C. Wallace, Technical Drainage Study for Queens Borough Culvert, August 2005.
- 2. G. C. Wallace, *Update to the Technical Drainage Study for Queens Borough Culvert*, December 2005.
- 3. G. C. Wallace, *Update #2 to the Technical Drainage Study for Queens Borough Culvert*, April 2006.
- 4. CCRFCD 2013 Las Vegas Valley Flood Control Master Plan Update, 2013.
- 5. Clark County Regional Flood Control District (CCRFCD) *Hydrologic Criteria and Drainage Design Manual*. August 1999.
- 6. U.S. Army Corps of Engineers, HEC-1 Flood Hydrograph Package. June 1998.
- 7. U. S. Department of Agriculture & National Resource Conservation Service, *Soil Survey of Las Vegas Valley Area, Nevada, Part of Clark County.* August 2014. Version 10.
- 8. U. S. Army Corps of Engineers, WSPGW Water Surface Pressure Gradient Package. Version 12.99. 1991-2000.
- 9. U.S. Army Corps of Engineers, *HEC-RAS River Analysis System*. January 2010. Version 4.1.0.

THE SEVENTY APPENDIX LAYOUT

Appendix A. Hydrologic Calculations and Information

- 1. Figure 513 McCarran Airport Rainfall Area
- 2. Figure 506 Rainfall Depth-Duration-Frequency 100-Year, 6-Hour
- 3. Figure 503 Rainfall Depth-Duration-Frequency 10-Year, 6-Hour
- 4. Table 501 Precipitation Adjustment Ratios
- 5. Rainfall Exhibits
- 6. Custom Soils Resource Report
- 7. Table 602 1 of 4 from the CCRFCD Manual
- 8. Table 602A
- 9. Revised 2013 MPU Curve Number Matrix
- 10. Composite Curve Number Calculations
- 11. Land Plan Exhibit
- 12. Existing Conditions Standard Form 4
- 13. Existing Conditions HEC-1 Model
- 14. Proposed Conditions Standard Form 4
- 15. Proposed Conditions HEC-1 Model
- 16. Exhibit A

Appendix B. Hydraulic Calculations and Information

- 1. Rough Grade Ditch Calculations
- 2. Conceptual Storm Drain Normal Depth Calculations
- 3. WSPGW
 - a. Queens Borough Culvert to Main 1 WSPGW Station Conversion
 - b. Mainline 1
 - c. Mainline 1 Laterals
 - d. Mainline 2
 - e. Mainline 2 Laterals
- 4. HEC-RAS
 - a. Existing Conditions
 - i. Main 1
 - ii. Main 2
 - b. Proposed Conditions
 - i. Main 1
 - ii. Main 2
- 5. Area Drain Calculation
- 6. Inlet Control Calculations
- 7. D-Load Calculations

Appendix C. Referenced Material (On CD)

- 1. Referenced Studies and Grading Plans Received From CLV
- 2. Technical Drainage Study for Queens Borough Culvert Update 2 Supplement
 - a. City of Las Vegas Approval Letter
 - b. Supplement Letter
 - c. WSPGW Model
 - d. Improvement Plans
- 3. 2013 Las Vegas Valley Flood Control Master Plan Update
 - a. ALLGOW3 HEC-1 Model Excerpt

THE SEVENTY APPENDIX LAYOUT

- b. Figure H-29
- c. Figure H-30
- 4. LOMR Case No. 06-09-BF86P
- 5. LOMR Case No. 06-09-B483P
- 6. Improvement Plans from One Queensridge Place (Sheet C10.03)
- 7. Improvement Plans from Rampart Boulevard (Sheet SD-5)

APPENDIX A

Hydrologic Information

McCarran Airport Rainfall Area

ТО	WNSHIP	RANGE	SECTIONS	TOWNSHIP	RANGE	SECTIONS
18	South	59 East	13-15,22-26,36	20 South	62 East	4-9,16-20,29-32
18	South	60 East	30-32	21 South	60 East	1-4,9-16,21-28,33-36
19	South	60 East	1-6,8-16,21-28,33-36	21 South	61 East	ALL SECTIONS
19	South	61 East	ALL SECTIONS	21 South	62 East	4-9,15-23, 25-36
19	South	62 East	2-11,14-23,27-34	22 South	60 East	1-4,10-15,24
20	South	60 East	1-3,10-15,21-28,33-36	22 South	61 East	1-24,26-29
20	South	61 East	ALL SECTIONS	22 South	. 62 East	1-10,17-18

1. Refer to Table 505 and Figure 516 Depth-Duration- Frequency values in the McCarran Airport Rainfall Area.

 Refer to Table 506 and Figure 517 for Time-Intensity-Frequency values on the McCarran Airport Rainfall Area.

Revision	Date
	1

WRC ENGINEERING REFERENCE:

USACE, Los Angeles District, 1988

FIGURE 513

RAINFALL DEPTH-DURATION-FREQUENCY 100-YEAR, 6-HOUR

(DEPTHS IN TENTHS OF INCHES)

RAINFALL DEPTH-DURATION-FREQUENCY 10-YEAR, 6-HOUR (DEPTHS IN TENTHS OF INCHES) 57 Parallel 13 21 20 36° 23 25 PRECIPITATION 14 26 $= 1.4^{\circ} \times 1.24$ 27 = 1.73" 28 Sedrchlight 31 Laughlin McCarran Airport rainfall area. See Figure 513. 33 Revision Date REFERENCE: WRC

NOAA ATLAS 2, VOLUME VII NEVADA, 1973

ENGINEERING

FIGURE 503

PRECIPITATION ADJUSTMENT RATIOS

Recurrence Interval	Ratio to NOAA Atlas 2
2-year	1.00
5-year	1.16
10-year	$1.24 \times 1.4 = 1.73$
25-year	1.33
50-year	1.39
100-year	1.43 × 2.1 = 3.00

$$\frac{1.73}{3.00} = 0.57$$

NOTE: 1. Multiply the values obtained from the NOAA Atlas 2 by the above ratios to obtain the adjusted precipitation values.

- 2. NOAA Atlas 2 values for use with TR-55 shall not be adjusted by the above ratios.
- 3. Tables 505 and 506 require no adjustments.

F	Revision	Date
E		
F		-
T		
	TABLE 5	0 1

WRC ENGINEERING REFERENCE:

USACE, Los Angeles District, 1988

NRCS

Natural Resources Conservation Service A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for Las Vegas Valley Area, Nevada, Part of Clark County

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (http://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/?cid=nrcs142p2_053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means

for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Contents

Preface	2
How Soil Surveys Are Made	5
Soil Map	
Soil Map	8
Legend	
Map Unit Legend	10
Map Unit Descriptions	
Las Vegas Valley Area, Nevada, Part of Clark County	12
152—Cave gravelly fine sandy loam, 0 to 4 percent slopes	
Soil Information for All Uses	13
Soil Reports	13
Soil Physical Properties	
Engineering Properties (Badlands)	
References	

How Soil Surveys Are Made

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil scientists classified and named the soils in the survey area, they compared the

individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.

Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.

After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

MAP LEGEND

Special Line Features Streams and Canals Interstate Highways Aerial Photography Very Stony Spot Major Roads Local Roads Stony Spot US Routes Spoil Area Wet Spot Other Rails Water Features Transportation Background 0 8 £30 9 # Soil Map Unit Polygons Area of Interest (AOI) Miscellaneous Water Soil Map Unit Points Soil Map Unit Lines Closed Depression Marsh or swamp Perennial Water Mine or Quarry Special Point Features Rock Outcrop **Gravelly Spot** Saline Spot **Borrow Pit** Lava Flow Clay Spot **Gravel Pit** Area of Interest (AOI) Blowout Landfill X 9 0 0 Soils

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:24,000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for map measurements. Source of Map: Natural Resources Conservation Service Web Soil Survey URL: http://websoilsurvey.nrcs.usda.gov Coordinate System: Web Mercator (EPSG:3857)

Albers equal-area conic projection, should be used if more accurate distance and area. A projection that preserves area, such as the Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts calculations of distance or area are required. This product is generated from the USDA-NRCS certified data as of the version date(s) listed below. Las Vegas Valley Area, Nevada, Part of Clark Soil Survey Area: County

Version 10, Aug 22, 2014 Survey Area Data:

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Severely Eroded Spot

Slide or Slip Sodic Spot

Sinkhole

Sandy Spot

Date(s) aerial images were photographed: May 7, 2011—Feb 25,

imagery displayed on these maps. As a result, some minor shifting The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background of map unit boundaries may be evident.

Map Unit Legend

	Las Vegas Valley Area, Nevada, Pa	art of Clark County (NV788)	
Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
152	Cave gravelly fine sandy loam, 0 to 4 percent slopes	867.7	100.0%
Totals for Area of Interest		867.7	100.0%

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An association is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Las Vegas Valley Area, Nevada, Part of Clark County

152—Cave gravelly fine sandy loam, 0 to 4 percent slopes

Map Unit Setting

National map unit symbol: hr9v Elevation: 2,000 to 4,800 feet

Mean annual precipitation: 4 to 12 inches Mean annual air temperature: 57 to 70 degrees F

Frost-free period: 180 to 280 days

Farmland classification: Not prime farmland

Map Unit Composition

Cave and similar soils: 100 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Cave

Setting

Landform: Fan remnants
Down-slope shape: Linear
Across-slope shape: Convex
Parent material: Mixed alluvium

Typical profile

H1 - 0 to 12 inches: gravelly fine sandy loam

H2 - 12 to 36 inches: indurated

H3 - 36 to 60 inches: very gravelly sandy loam

Properties and qualities

Slope: 0 to 4 percent

Depth to restrictive feature: 4 to 20 inches to petrocalcic

Natural drainage class: Well drained

Runoff class: Very high

Capacity of the most limiting layer to transmit water (Ksat): Very low (0.00 to 0.00

in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum in profile: 40 percent

Gypsum, maximum in profile: 5 percent

Salinity, maximum in profile: Nonsaline to slightly saline (0.0 to 4.0 mmhos/cm)

Sodium adsorption ratio, maximum in profile: 12.0

Available water storage in profile: Very low (about 1.2 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 7s

Hydrologic Soil Group: D

Other vegetative classification: LIMY 3-5" P.Z. (030XB019NV 3)

Soil Information for All Uses

Soil Reports

The Soil Reports section includes various formatted tabular and narrative reports (tables) containing data for each selected soil map unit and each component of each unit. No aggregation of data has occurred as is done in reports in the Soil Properties and Qualities and Suitabilities and Limitations sections.

The reports contain soil interpretive information as well as basic soil properties and qualities. A description of each report (table) is included.

Soil Physical Properties

This folder contains a collection of tabular reports that present soil physical properties. The reports (tables) include all selected map units and components for each map unit. Soil physical properties are measured or inferred from direct observations in the field or laboratory. Examples of soil physical properties include percent clay, organic matter, saturated hydraulic conductivity, available water capacity, and bulk density.

Engineering Properties (Badlands)

This table gives the engineering classifications and the range of engineering properties for the layers of each soil in the survey area.

Hydrologic soil group is a group of soils having similar runoff potential under similar storm and cover conditions. The criteria for determining Hydrologic soil group is found in the National Engineering Handbook, Chapter 7 issued May 2007(http:// directives.sc.egov.usda.gov/OpenNonWebContent.aspx?content=17757.wba). Listing HSGs by soil map unit component and not by soil series is a new concept for the engineers. Past engineering references contained lists of HSGs by soil series. Soil series are continually being defined and redefined, and the list of soil series names changes so frequently as to make the task of maintaining a single national list virtually impossible. Therefore, the criteria is now used to calculate the HSG using the component soil properties and no such national series lists will be maintained. All such references are obsolete and their use should be discontinued. Soil properties that influence runoff potential are those that influence the minimum rate of infiltration for a bare soil after prolonged wetting and when not frozen. These properties are depth to a seasonal high water table, saturated hydraulic conductivity after prolonged wetting, and depth to a layer with a very slow water transmission rate. Changes in soil properties caused by land management or climate changes also cause the hydrologic

soil group to change. The influence of ground cover is treated independently. There are four hydrologic soil groups, A, B, C, and D, and three dual groups, A/D, B/D, and C/D. In the dual groups, the first letter is for drained areas and the second letter is for undrained areas.

The four hydrologic soil groups are described in the following paragraphs:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

Depth to the upper and lower boundaries of each layer is indicated.

Texture is given in the standard terms used by the U.S. Department of Agriculture. These terms are defined according to percentages of sand, silt, and clay in the fraction of the soil that is less than 2 millimeters in diameter. "Loam," for example, is soil that is 7 to 27 percent clay, 28 to 50 percent silt, and less than 52 percent sand. If the content of particles coarser than sand is 15 percent or more, an appropriate modifier is added, for example, "gravelly."

Classification of the soils is determined according to the Unified soil classification system (ASTM, 2005) and the system adopted by the American Association of State Highway and Transportation Officials (AASHTO, 2004).

The Unified system classifies soils according to properties that affect their use as construction material. Soils are classified according to particle-size distribution of the fraction less than 3 inches in diameter and according to plasticity index, liquid limit, and organic matter content. Sandy and gravelly soils are identified as GW, GP, GM, GC, SW, SP, SM, and SC; silty and clayey soils as ML, CL, OL, MH, CH, and OH; and highly organic soils as PT. Soils exhibiting engineering properties of two groups can have a dual classification, for example, CL-ML.

The AASHTO system classifies soils according to those properties that affect roadway construction and maintenance. In this system, the fraction of a mineral soil that is less than 3 inches in diameter is classified in one of seven groups from A-1 through A-7 on the basis of particle-size distribution, liquid limit, and plasticity index. Soils in group A-1 are coarse grained and low in content of fines (silt and clay). At the other extreme, soils in group A-7 are fine grained. Highly organic soils are classified in group A-8 on the basis of visual inspection.

If laboratory data are available, the A-1, A-2, and A-7 groups are further classified as A-1-a, A-1-b, A-2-4, A-2-5, A-2-6, A-2-7, A-7-5, or A-7-6. As an additional refinement, the suitability of a soil as subgrade material can be indicated by a group index number.

Group index numbers range from 0 for the best subgrade material to 20 or higher for the poorest.

Rock fragments larger than 10 inches in diameter and 3 to 10 inches in diameter are indicated as a percentage of the total soil on a dry-weight basis. The percentages are estimates determined mainly by converting volume percentage in the field to weight percentage.

Percentage (of soil particles) passing designated sieves is the percentage of the soil fraction less than 3 inches in diameter based on an ovendry weight. The sieves, numbers 4, 10, 40, and 200 (USA Standard Series), have openings of 4.76, 2.00, 0.420, and 0.074 millimeters, respectively. Estimates are based on laboratory tests of soils sampled in the survey area and in nearby areas and on estimates made in the field.

Liquid limit and plasticity index (Atterberg limits) indicate the plasticity characteristics of a soil. The estimates are based on test data from the survey area or from nearby areas and on field examination.

References:

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Absence of an entry indicates that the data were not estimated. The asterisk "" denotes the representative texture; other possible textures follow the dash. The criteria for determining the hydrologic soil group for individual soil components is found in the National Engineering Handbook, Chapter 7 issued May 2007(http://directives.sc.egov.usda.gov/OpenNonWebContent.aspx? content=17757.wba).

			Engi	jineering Properties-Las Vegas Valley Area, Nevada, Part of Clark County	Las Vegas V	'alley Area,	Nevada, Pa	art of Clar	k County					
Map unit symbol and	Pct. of	Pct. of Hydrolo	Depth	USDA texture	Classif	Classification	Fragments	ents	Percenta	ige passir	Percentage passing sieve number—	umber-	Liquid	Plasticit
soll name	map unit	group			Unified	AASHTO	>10 3-10 inches	3-10 inches	4	10	40	200	Ĭ	y index
			ln				Pct	Pct					Pct	
152—Cave gravelly fine sandy loam, 0 to 4 percent slopes	92													
Cave	100 D	D	0-12	Gravelly fine sandy loam	SC-SM, SM	A-2, A-4	0-0-0		70-80- 90	60-68-	40-53- 65	25-33- 40	15-20 -25	NP-3 -5
			12-36	Indurated	Î	1	1	1	1	1	1	1	1	1
			36-60	Gravelly loamy sand, GM, GP- very gravelly sandy GM, loam SM, SP- SM	GM, GP- GM, SM, SP- SM	A-1, A-2	0-0-0		35-55- 75	30-45-	20-28- 35	10-20- 30	0-8 -15	d Z

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_054262

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053577

Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053580

Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/home/?cid=nrcs142p2 053374

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/landuse/rangepasture/?cid=stelprdb1043084

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/scientists/?cid=nrcs142p2_054242

United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053624

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf

HYDROLOGIC CRITERIA AND DRAINAGE DESIGN MANUAL

RUNOFF CURVE NUMBERS (URBAN AREAS¹)

Cover description		•		imbers for soil group-	•
Cover type and hydrologic condition	Average percent impervious area ²	A	В	С	D
Fully developed urban areas (vegetation established)					
Open space (lawns, parks, golf courses, cemeteries, etc.):					
Poor condition (grass cover < 50%)		68	79	86	89
Fair condition (grass cover 50% to 75%)		49	69	79	84
Good condition (grass cover > 75%)		39	61	74	80
mpervious areas:					
Paved parking lots, roofs, driveways, etc.					
(excluding right-of-way).		98	98	98	98
Streets and roads:				2.2	
Paved: curbs and storm sewers (excluding					
right-of-way)		98	98	98	98
Paved: open ditches (including right-of-way)		83	89	92	93
Gravel (including right-of-way)		76	85	89	91
Dirt (including right-of-way)		72	82	87	89
Vestern desert urban areas:				-	-
Natural desert landscaping (pervious areas only)		63	77	85	88
Artificial desert landscaping (impervious weed		15.5			
barrier, desert shrub with 1- to 2-inch sand					0.00
or gravel mulch and basin borders)		96	96	96	96
Jrban districts:			100000		
Commercial and business	85	89	92	94	95
Industrial	72	81	88	91	93
Residential districts by average lot size:					
See Table 602A					
Denotoria a valor arras					
Developing urban areas		ÿ.			
lewly graded areas (pervious areas only,					
no vegetation)s		77	86	91	94
			00	31	34

¹ Average runoff condition, and I = 0.2S.

Revision Date

WRC ENGINEERING REFERENCE:

SCS TR-55, USDA, June 1986.

TABLE 602 1 of 4

² The average percent impervious area shown was used to develop the composite CN's. Other assumptions are as follows: impervious areas are directly connected to the drainage system. Impervious areas have a CN of 98, and pervious areas are considered equivalent to open space in good hydrologic condition. CN's for other combinations of conditions may be computed using Figure 603.

³ CN's shown are equivalent to those of pasture. Composite CN's may be computed for other combinations of open space cover type.

⁴ Composite CN's for natural desert landscaping should be computed using Figure 603 based on the impervious area percentage (CN #98) and the pervious area CN. The pervious area CN's are assumed equivalent to desert shrub in poor hydrologic condition.

⁵ Composite CN's to use for the design of temporary measures during grading and construction should be computed using Figure 603 based on the degree of development impervious area percentage) and the CN's for the newly graded pervious areas.

HYDROLOGIC CRITERIA AND DRAINAGE DESIGN MANUAL

RUNOFF CURVE NUMBERS - RESIDENTIAL DISTRICTS

Average Lot Size	Percent	Çurve Nu	mber for H	ydrologic \$	Soil Groups
or Usage ¹	Impervious ²	Α	В	С	D
Apartments/Condos	72	81	- 88	91	93
Townhouses/6,000 sq ft lots or less	69	80	87	90	92
7,000 sq ft lots	63	76	84	89	91
8,000 sq ft lots	58	73	82	88	90
10,000 sq ft lots	38	61	75	83	87
14,000 sq ft lots	30	57	72	81	86
20,000 sq ft lots	25	54	70	80	85
40,000 sq ft lots	20	51	68	79	84
80,000 sq ft lots	12	46	65	77	82

¹ Lot size should represent the size of the average lot and not the gross acreage divided by the number of lots.

TABLE 602A

REFERENCE:

² Actual percent impervious value should be compared to selected land use type.

³ In cases where average residential lots are smaller than 6,000 sq ft, commercial/business/industrial land use should be used.

		CH	Handle Control of the Control)						4		-	L		N L C	L	C						The state of the s	
	COMPONENTS	FNIS									Ž	AD USE	CLAS	LAND USE CLASSIFICATION INDEX NUMBER		NDEX	NOMBE	ŗ,							
MAP #	OPEN DESERT	OPEN	% ІМР	<u></u>	2*	က	4	2*	9	* 2	∞	* 6	10	11 12		13	14	15	16	17	18	19	20		21
	< %			100	10	09	35	0	0	0	0	0	15	7	0	0	55	36	19	14	15	10	30		15
		< %		0	85	20	40	71	38	28	15	10	15	00	90	0	20	35	19	14	0	0			0
			< %	0		20	25	29	62	72			02	85		0	25	29	62						
	3	CS	CN			S	SOIL TYPE COMPOSITE ON FOR LAND USE TYPE	PE COI	MPOSI	TE CN	FOR LA	ND US	E TYP	Ш										81914	
152	88	80	86	88.0	82.0	88.0	88.0 82.0 88.0 87.0 85.0		91.0	91.0 93.0 95.0 96.0 94.0 96.0	95.0	96.0	94.0	96.0	89.0	30.0	89.0	88.0	93.0	94.0	89.0 30.0 89.0 88.0 93.0 94.0 97.0 97.0 95.0 95.0	97.0	95.0		97.0
					-			-		4		(
*	4 Please refer to Land Use Show	ركو	t	70	, pu	35	3	100h	9	on MPU H-maps	2	+	MA	X											

PERVIOUS AR	EA CURVE	NUMBER	S					
CONDITION 1:								
CONDITION 2:	>	LANDSCA	PED, LAW	NS, TREE	S, GOOD I	HYDROLO	GIC CONDITI	ON
CNIVALUEC								
CN VALUES		1.15.75	20010010	NOOH OR	OLID.			
		HYL	DROLOGIC	SOIL GRO				
CONDITION		Α	В	С	D	ROCK		
1	>	63	77	85	88	90		
2	>	39	61	74	80	90		
							CONDITION	CONDITION
	MAP		HYDROL	OGIC SOII	GROUP	-	1	2
	UNIT	%A	%B	%C	%D	%ROCK	CN	CN
	152	0	0	0	100	0	88	80

				chestra (Phase 1) HTED CURVE NUMBERS	
			F	Proposed Conditions	
Basin	Soil	Percent	CN	Land Use	WCN
57B-1	152 152	5.0% 54.0%	82.0 93.0	Parks, Golf Courses Public Facility, Residential	93.7
3/6-1	152	41.0%	96.0	Commercial, Retail, Casino, High Rise Condo	33.7
57B-1A	152	100.0%	85.0	Medium Residential	85.0
57B-1B	152	100.0%	93.0	Public Facility, Residential	93.0
57B-1C	152	100.0%	96.0	Commercial, Retail, Casino, High Rise Condo	96.0
57B-2A	152	100.0%	87.0	Low Density Residential	87.0
57B-2B	152	100.0%	87.0	Low Density Residential	87.0
57B-2C	152	100.0%	87.0	Low Density Residential	87.0
	102	100.076	07.0		37.0
57B-2D	152	100.0%	91.0	High Density Residential	91.0
57B-2E	152	100.0%	91.0	High Density Residential	91.0
57B-2F	152	100.0%	91.0	High Density Residential	91.0
57B-2G1	152	100.0%	87.0	Low Density Residential	87.0
57B-2G2	152	100.0%	87.0	Low Density Residential	87.0
57B-2H1	152	100.0%	87.0	Low Density Residential	87.0
57B-2H2	152	100.0%	87.0	Low Density Residential	87.0
57B-2I	152	100.0%	87.0	Low Density Residential	87.0
	152	29.2%	82.0	Parks, Golf Courses	
	152	9.0%	85.0	Medium Residential	
57B-3	152	54.0%	93.0	Public Facility, Residential	89.3
	152	7.8%	96.0	Commercial, Retail, Casino, High Rise Condo	1
57B-3A	150	100.00/	05.0	Medium Residential	05.0
500 500 100 10	152	100.0%	85.0	•	85.0
57B-3B	152	100.0%	85.0	Medium Residential	85.0
57B-3C	152	100.0%	87.0	Low Density Residential	87.0
57B-3D	152	100.0%	87.0	Low Density Residential	87.0
57B-3E	152	100.0%	87.0	Low Density Residential	87.0
57B-3F	152	100.0%	87.0	Low Density Residential	87.0
57B-3G	152	100.0%	87.0	Low Density Residential	87.0
	152	8.1%	82.0	Parks, Golf Courses	
	152	0.1%	85.0	Medium Residential	200
57B-4	152	30.2%	93.0	Public Facility, Residential	93.8

57B-4B	152	100.0%	96.0	Commercial, Retail, Casino, High Rise Condo	96.0
57B-4C	152	100.0%	96.0	Commercial, Retail, Casino, High Rise Condo	96.0
ON1	152	100.0%	82.0	Parks, Golf Courses	82.0
ON2	152	100.0%	82.0	Parks, Golf Courses	82.0
ON3R	152	100.0%	82.0	Parks, Golf Courses	82.0
ON5	152	100.0%	82.0	Parks, Golf Courses	82.0
ON6	152	100.0%	93.0	Public Facility, Residential	93.0
ON8	152	100.0%	82.0	Parks, Golf Courses	82.0
ON9	152	100.0%	82.0	Parks, Golf Courses	82.0
ON10	152	100.0%	82.0	Parks, Golf Courses	82.0
ON11R	152	100.0%	82.0	Parks, Golf Courses	82.0
ON12	152	100.0%	82.0	Parks, Golf Courses	82.0
ON13	152	100.0%	82.0	Parks, Golf Courses	82.0
ON14	152	100.0%	82.0	Parks, Golf Courses	82.0
ON15R	152	100.0%	82.0	Parks, Golf Courses	82.0
ON16R	152	100.0%	82.0	Parks, Golf Courses	82.0
ON18R	152	100.0%	82.0	Parks, Golf Courses	82.0
DON1	152	100.0%	95.0	Commercial and business	95.0
DON2	152	100.0%	95.0	Commercial and business	95.0
DON3	152	100.0%	95.0	Commercial and business	95.0
DON4	152	100.0%	95.0	Commercial and business	95.0

	1
_	4
<	1
-	3
-	J
7	7
	=
<	ı
5	Ē
=	2
	_
2	Z
0	_
C	נ
	=
u	מ
Ŭ	ú
ш	ч
2	٦
	_
-	1
C	_
2	2
	7
<	7
	_
<	Ι
_	=
Ω	6
	7
Ш	Ц
_	_
-	_
0	1
	÷
•)
_	_
(1
_	_
4	n
C	נ
-	1
-	ر
_	J
-	1
-	י
n	1
	=
	ı
_	_
_	Ľ
-	

TIME OF CONCENTRATION

Existing Conditions The Seventy

SLOPE

LENGTH INITIAL

Feet

Sq Mi AREA

INITIAL / OVERLAND

SUB-BASIN DATA

ENGINEERS \ SURVEYORS

TIME (TI)

250 370 100 20

0.0485 0.0443

31.1

0.8468 0.7320 0.8376 0.8772

93.7

Ω Ω Ω Ω Ω Ω Ω Ω

57B-1 57B-1A

 Ξ

85

(2)

4

(3) Ac

(7)

(16)

S

DEV./EX. (D or E)

DESIG:

1.00 13.40

0.0009 0.0098

9.0

96

93

57B-1B 57B-1C 6.3 3.0 1.7 5.7

0.7584

87 87 87 91 91 91

57B-2A 57B-2B

0.0301

28.4 19.3 186

1.00

2.40 2.80 (9) %

2.00

20

0.0047

1.00 1.00

100

0.0027

110

0.0088

0.8112 0.8112

0.7584

57B-2C

57B-2D 57B-2E 57B-2F

0.7584

5.60 2.50

35 40

0.0026

0.7584 0.7584

87

57B-2G1

57B-2G2

87 87

0.0073

4.6

1.00

0.0902

57.8 1.6

0.8112

1.00

110 110

0.0227

14.5

3.70 2.30 7.50 1.30

300 300

0.0291

18.6

0.7584

0.0156 0.0072

10.0

0.7584

87

57B-2H2

57B-21 57B-3

57B-2H1

4.6

0.7584

87

1.00

380 170

0.0481

30.8

0.7888

89.3

0.0259

16.6

0.7320

85

57B-3A 57B-3B 57B-3C 57B-3D 57B-3E

80

1.00 1.00 1.00 1.00 2.70 3.20 2.00 4.70 2.70 1.00 4.20 5.00

110

0.0513

32.8

0.7320 0.7584

85

87

130

0.0069

4.4

125

0.0184 0.0251

11.8 16.0

0.7584 0.7584 0.7584

87 87 87 87

240 180 274

0.0070 0.0110

0.6924

82

57B-4A 57B-4B 57B-4C

57B-4

35

0.1293

82.7 4.5

0.8482

93.8

150

7.1 7.8

0.8772 0.8772

96 96 82 82 82 82

Δ

220

0.0023

1.5

0.7584

57B-3G

57B-3F

0,0116

7.4

100 165 180 135 150

0.0122

0.0397

25.4

0.6924

ON1 ON2 ON3 ON4 ON5

12.00

0,0040

2.5

0.0073 0.0147

4.7

0.6924

0.0273

17.5

0.6924 0.6924 9.30 4.00

840.050 Project No:

17-Feb-16 Date:

MMC Calculated by:

	REMARKS				Rainfall:		2.89	2.96	2.91	2.89	3.05	2.99	2.96	3.09	3.08	3.03	3.08	3.03	3.01	3.04	2.99	3.06	3.07	3.00	3.05	2.99	3.06	3.05	2.99	2.91	2.93	2.91	2.90	3.08	3.00	2.96	2.94
MMC	Tlag		Tlag =	0.6Tc/60	Hours	(15)	0.173	0.179	0.150	0.065	0.159	0.089	0.069	0.130	0.102	0.167	0.052	0.094	0.296	0.182	0.090	0.256	0.149	0.166	0.118	0.160	0.214	0.142	0.072	0.202	0.102	0.071	0.118	0.131	0.159	0.056	0.086
Calculated by:	2				Min	(14)	17.3	17.9	15.0	6.5	15.9	8.9	6.9	13.0	10.2	16.7	5.2	9.4	29.6	18.2	9.0	25.6	14.9	16.6	11.8	16.0	21.4	14.2	7.2	20.2	10.2	7.1	11.8	13.1	15.9	5.6	8.6
Calcı	Tc CHECK	URBANIZED BASINS	Tc=	(L/180)+10	Min	(13)	28.2	23.6	19.6	13.0	26.0	18.1	11.8	17.3	18.2	27.3	14.3	18.6	34.6	25.6	19.2	35.3	18.5	24.5	17.1	24.6	29.1	23.1	12.7	37.4	14.9	15.6	19.2	22.3	26.0	12.4	13.8
	TcC	URBANIZI	TOTAL	LENGTH	Feet	(12)	3270	2450	1730	540	2886	1450	322	1310	1470	3110	765	1551	4420	2800	1655	4550	1530	2610	1270	2625	3440	2350	480	4925	874	1010	1660	2205	2880	435	680
				¥	Min	(11)	12.2	8.4	10.3	3.7	12.4	5.5	0.7	9.7	4.8	11.2	3.2	6.5	22.7	10.1	6.2	15.6	6.2	9.7	4.8	9.1	11.9	8.3	1.0	18.1	3.0	3.6	7.8	7.2	10.2	1.9	4.3
			V2	VELOCITY	fps	(10)	4.5	4.6	3.1	3.4	4.0	5.0	8.0	3.2	5.6	4.8	5.2	4.5	3.2	4.5	4.9	4.7	4.3	4.7	4.8	5.0	4.8	4.9	9.9	4.7	4.8	5.2	3.9	5.3	4.8	4.0	3.1
2	TRAVEL TIME	(Tt)	. 1/	VELOCITY	fps	(ae)	3.0	3.1	2.0	2.2	2.6	3.3	5.3	2.1	3.7	3.2	3.4	3.0	2.1	3.0	3.3	3.1	2.9	3.1	3.2	3.3	3.2	3.2	4.3	3.1	3.2	3.4	2.6	3.5	3.2	2.6	2.0
				SLOPE	%	(9a)	2.2	2.3	1.0	1.2	1.7	2.7	8.9	1.1	3.4	2.5	2.9	2.2	1.1	2.2	2.6	2.4	2.0	2.4	2.5	2.7	2.5	2.5	4.6	2.4	2.5	2.9	1.6	3.0	2.5	1.7	1.0
			TRAVEL	LENGTH	Feet	(8)	3020	2080	1630	490	2700	1400	222	1200	1360	3000	730	1511	4120	2500	1575	4170	1360	2500	1140	2500	3200	2170	260	4890	600	860	1560	2040	2700	300	530
	QN			F	Min	(7)	5.1	9.5	4.7	2.8	3.5	3.5	6,1	5.5	5.5	5.5	2.0	2.9	6.9	8.1	2.8	10.0	8.6	6.9	7.0	6.9	9.5	5.9	6.2	2.1	7.3	3.5	4.0	5.8	5.8	3.7	4.3

File: Badlands_sf4_Existing.xls

Printed: 3/1/2016 5:05 PM

Page 1 of 2

3.05

0.105

10.5

18.6

1545

5.4

5.2

3.4

2.9

1420

5.2

125

9.4

0.6924

82

									\neg							_				7
3.04	2.99	3.06	2.98	2.95	3.08	3.04	3.00	2.98	2.97	2.93	2.95	2.92	2.89	2.91	2.88					
0.057	0.073	0.232	0.079	0.106	0.121	0.107	0.193	0.114	0.088	0.066	0.224	0.092	0.114	0.195	0.071		S/100) ^{1/2}	S/100) ^{1/2}	-ORM 4	
5.7	7.3	23.2	7.9	10.6	12.1	10.7	21.5	11.4	8.8	9.9	22.4	9.5	11.4	19.5	7.1		$V1 = 20.2*(S/100)^{1/2}$	$V2 = 30.6*(S/100)^{1/2}$	STANDARD FORM 4	
14.5	21.2	28.8	18.7	17.3	18.5	19.7	19.3	22.7	22.5	16.7	27.3	15.0	19.0	23.8	15.8		Developed:		STA	
805	2015	3375	1560	1310	1525	1750	1675	2280	2245	1201	3105	268	1615	2492	1035					
4.4	4.1	18.2	5.5	5.6	4.8	5.2	14.1	7.2	7.4	4.2	10.9	2.8	6.4	7.8	3.0		/100) ^{1/2}	/100) ^{1/2}		-
4.0	9.0	3.1	5.2	3.9	5.4	5.8	2.2	5.6	5.6	5.6	4.9	6.3	4.3	5.3	6.8		$V1 = 14.8*(S/100)^{1/2}$	$V2 = 29.4*(S/100)^{1/2}$		
2.6	6.0	2.0	3,4	2.6	3.6	3.8	1.4	3.7	3.7	3.7	3.2	4.1	2.9	3.5	4.5		Existing:	,		
1.7	8.7	1.0	2.9	1.6	3.1	3.6	0.5	3.3	3.3	3.4	2.5	4.2	2.0	3.0	4.9			i.		
785	1950	3085	1460	1040	1300	1540	1575	2160	2200	1160	2930	785	1415	2222	970		tance;			
1.3	3.2	5.0	2.4	5.0	7.2	5.5	7.3	4.1	4.1	2.4	11.5	6.4	5.0	11.7	4.1	ons,	V1 applies to the first 500 feet of travel distance;	el distance.		
4.00	6.20	15.50	29.00	13.70	3.50	7.10	1.00	7.50	45.00	7.30	09.0	1.80	9.00	1.10	3.10	For the travel time (Tt) calculations,	500 feet c	ıaining trav		
20	65	290	100	270	225	210	100	120	45	41	175	112	200	270	65	vel time (T	to the first	to the rem	MPU	
0.0035	0.0190	0.0399	0.0177	0.0157	0.0182	0.0187	0.0054	0.0351	0.0180	0.0143	0.0317	0.0100	0.0104	0.0348	0.0133	For the tra	V1 applies	V2 applies to the remaining travel d	ed from	
2.3	12.2	25.5	11.4	10.0	11.6	12.0	3.5	22.5	11.5	9.1	20.3	6.4	9.9	22.3	8.5				ference	
0.8376	0.6924	0.6924	0.6924	0.6924	0.6924	0.6924	0.6924	0.6924	0.6924	0.6924	0.6924	0.6924	0.6924	0.6924	0.6924	0.6 Tc			alues re	
93	82	82	82	82	82	82	82	82	82	82	82	82	82	82	82	Tlag = 0.6 Tc	1 S ^{1/3}	39	S C N	
D	О	۵	D	D	D	Q	D	٥	۵	٥	D	О	۵	О	D	Τŧ	$Ti = 1.8 (1.1 - K) L^{1/2} / S^{1/3}$	K = 0.0132 (CN) - 0.39	REFERENCE: CN values referenced from MPU	
9NO	ON8	6NO	ON10	ON11	ON12	ON13	ON14	ON15	ON16	ON17	ON18	ON19	ON20	ON21	ON22	Tc = Ti + Tt	Ti = 1.8 (K = 0.01	REFE	

EXISTING.OUT

 * U.S. ARMY CORPS OF ENGINEERS *
* HYDROLOGIC ENGINEERING CENTER *
* 609 SECOND STREET *
* DAVIS, CALIFORNIA 95616 *
* (916) 756-1104 *
*

THIS PROGRAM REPLACES ALL PREVIOUS VERSIONS OF HEC-1 KNOWN AS HEC1 (JAN 73), HEC1GS, HEC1DB, AND HEC1KW.

THE DEFINITIONS OF VARIABLES -RTIMP- AND -RTIOR- HAVE CHANGED FROM THOSE USED WITH THE 1973-STYLE INPUT STRUCTURE. THE DEFINITION OF -AMSKK- ON RM-CARD WAS CHANGED WITH REVISIONS DATED 28 SEP 81. THIS IS THE FORTRAN77 VERSION NEW OPTIONS: DAMBERAK OUTFLOW SUBMERGENCE, SINGLE EVENT DAMAGE CALCULATION, DSS:WRITE STAGE FREQUENCY, DSS:READ TIME SERIES AT DESIRED CALCULATION INTERVAL LOSS RATE:GREEN AND AMPT INFILTRATION KINEMATIC WAVE: NEW FINITE DIFFERENCE ALGORITHM

LINE ID.	1	HEC-1 INPUT	GE :	1
## FREE *** 2		ID12345678910		
10		*DIAGRAM		
10				
THE SEVENTY	2	ID * *		
S	4	THE SEVENTY		
The content of the	5	ID *:		
10 10 10 10 10 11 11 10 11 11 10 11 11 10 11 11 10 11 11 10 11 11 10 11	7	TD *:		
100 100 ** FILEMANE	8	ID *: RETURN PERIOD 100 & 10 TEAR : TD *: DISTRIBUTION 6-HOUR SDN3 : *		
14	10			
14	12	ID *: DATE MODELED 2/22/16 : *		
15		TD * *		
### ### ### ### ### ### ### ### ### ##	15	ID *:		
18	16 17	10		
201	18			
CLARK COUNTY REGIONAL FLOOD CONTROL DISTRICT 2008 MASTER PLAN OPDATE 23	20	TD 2013 LAS VEGAS VALLEY FLOOD CONTROL MASTER PLAN UPDATE		
10 GOWAN WATERSHED (ACCOMMENDED DRAINAGE SYSTEM WITH ULTIMATE DEVELOPMENT	21 22	ID CLARK COUNTY REGIONAL FLOOD CONTROL DISTRICT 2008 MASTER PLAN UPDATE		
1	23	TD COWAN WATERSHED (ALL)		
DESIGN STORM = 100-YEAR 6-HR STORM STORM DISTRIBUTION = SDN #3 DESIGN #4	25	ID INPUT FILE = ALLGOW3.DAT		
28	26 27	TD DESIGN STORM = 100-YEAR 6-HR STORM		
CHECKED BY PBS&3 (HARSHAL B. DESAT, P.E., CFM) STORM CENTERING = FULL WATERSHED	28	TD STORM DISTRIBUTION = SDN #3		
32	30	ID CHECKED BY PBS&J (HARSHAL B. DESAI, P.E., CFM)		
10		ID STORM CENTERING = FULL WATERSHED ID JR CARDS CONTAIN DARFS BASED ON THE FOLLOWING VALUES:		
SQL MIT SQL	33	ID		
1	34 35	ID SQ. MI.		
1	36 37	TD 0.5-1 0.975		
10	38	ID 1-2 0.95		
10	40	ID 3-4 0.915		
43	41 42	TD 5-6 0.903		
10	43	ID 6-7 0.895		
47 ID 100-YEAR, 6-HOUR STORM, SDN3 48 ID 100-YEAR, 6-HOUR STORM, SDN3 49 ID 50 IT 5 0 0 0 650 51 IO 5 0 0 0 52 IN 5 0 0.95 0.95 0.915 0.908 0.903 0.895 0.570 1 HEC-1 INPUT PAGE 2 LINE ID	45	TD		
48				
1 So	48	ID 100-YEAR, 6-HOUR STORM, SDN3		
1	50	IT 5 0 0 650		
1 HEC-1 INPUT PAGE 2		TN 5 0 0		
LINE ID		JR PREC 0.99 0.975 0.95 0.925 0.915 0.908 0.903 0.895 0.570		
LINE ID12345678910 54	1	* HEC-1 INPUT P.	AGE	2
54 KK ON1 55 KM OFFSTTE BASIN ON1 56 PB 3.08 57 BA 0.0397 58 PC 0 0 0.02 0.057 0.07 0.087 0.108 0.124 0.13 0.13 0.13 59 PC 0.13 0.13 0.13 0.133 0.14 0.142 0.148 0.158 0.172 0.181 60 PC 0.19 0.197 0.199 0.2 0.201 0.204 0.214 0.229 0.241 0.249 61 PC 0.251 0.256 0.27 0.278 0.281 0.283 0.295 0.322 0.352 0.409 62 PC 0.499 0.59 0.71 0.744 0.781 0.812 0.819 0.835 0.851 0.856 63 PC 0.86 0.868 0.876 0.888 0.91 0.926 0.937 0.95 0.97 0.976 64 PC 0.982 0.985 0.987 0.989 0.99 0.993 0.993 0.994 0.995 0.998 65 PC 0.998 0.999 1		TD 1 2 3 45678910		
56 PB 3.08 57 BA 0.0397 58 PC 0 0.02 0.057 0.07 0.087 0.108 0.124 0.13 0.13 0.13 59 PC 0.13 0.13 0.13 0.133 0.144 0.142 0.148 0.158 0.172 0.181 60 PC 0.19 0.197 0.199 0.2 0.201 0.204 0.214 0.229 0.241 0.249 61 PC 0.251 0.256 0.27 0.278 0.281 0.283 0.295 0.322 0.352 0.409 62 PC 0.499 0.59 0.71 0.744 0.781 0.812 0.819 0.835 0.851 0.856 63 PC 0.86 0.868 0.876 0.888 0.91 0.926 0.937 0.95 0.97 0.976 64 PC 0.982 0.985 0.997 0.989 0.99 0.993 0.993 0.994 0.995 0.998 65 PC 0.998 0.999 1	LINE			
56 PB 3.08 57 BA 0.0397 58 PC 0 0.02 0.057 0.07 0.087 0.108 0.124 0.13 0.13 0.13 59 PC 0.13 0.13 0.13 0.133 0.144 0.142 0.148 0.158 0.172 0.181 60 PC 0.19 0.197 0.199 0.2 0.201 0.204 0.214 0.229 0.241 0.249 61 PC 0.251 0.256 0.27 0.278 0.281 0.283 0.295 0.322 0.352 0.409 62 PC 0.499 0.59 0.71 0.744 0.781 0.812 0.819 0.835 0.851 0.856 63 PC 0.86 0.868 0.876 0.888 0.91 0.926 0.937 0.95 0.97 0.976 64 PC 0.982 0.985 0.997 0.989 0.99 0.993 0.993 0.994 0.995 0.998 65 PC 0.998 0.999 1	54	KK ON1		
57 BA 0.0397 58 PC 0 0 0.02 0.057 0.07 0.087 0.108 0.124 0.13 0.13 0.13 59 PC 0.13 0.13 0.13 0.133 0.14 0.142 0.148 0.158 0.172 0.181 60 PC 0.19 0.197 0.199 0.2 0.201 0.204 0.214 0.229 0.241 0.249 61 PC 0.251 0.256 0.27 0.278 0.281 0.283 0.295 0.322 0.352 0.409 62 PC 0.499 0.59 0.71 0.744 0.781 0.812 0.819 0.835 0.851 0.856 63 PC 0.86 0.868 0.876 0.888 0.91 0.926 0.937 0.95 0.97 0.976 64 PC 0.982 0.985 0.987 0.989 0.99 0.993 0.993 0.994 0.995 0.998 65 PC 0.998 0.999 1	55 56	KM OFFSITE BASIN ON1		
58 PC 0.13 0.13 0.13 0.13 0.14 0.142 0.148 0.158 0.172 0.181 60 PC 0.19 0.197 0.199 0.2 0.201 0.204 0.214 0.229 0.241 0.249 61 PC 0.251 0.256 0.27 0.278 0.281 0.283 0.295 0.322 0.352 0.409 62 PC 0.499 0.59 0.71 0.744 0.781 0.812 0.819 0.835 0.851 0.856 63 PC 0.86 0.868 0.876 0.888 0.91 0.926 0.937 0.95 0.97 0.976 64 PC 0.982 0.985 0.987 0.989 0.99 0.993 0.993 0.994 0.995 0.998 65 PC 0.998 0.999 1	57	BA 0.0397		
60 PC 0.199 0.197 0.199 0.2 0.201 0.204 0.214 0.223 0.241 0.249 61 PC 0.251 0.256 0.27 0.278 0.283 0.281 0.283 0.295 0.322 0.352 0.409 62 PC 0.499 0.59 0.71 0.744 0.781 0.812 0.819 0.835 0.851 0.856 63 PC 0.86 0.868 0.876 0.888 0.91 0.926 0.937 0.95 0.97 0.976 64 PC 0.982 0.985 0.987 0.989 0.99 0.993 0.993 0.994 0.995 0.998 65 PC 0.998 0.999 1 66 LS 0 82	58 59	PC 0.13 0.13 0.13 0.13 0.14 0.142 0.148 0.158 0.172 0.181		
62 PC 0.499 0.59 0.71 0.744 0.781 0.812 0.819 0.835 0.851 0.858 0.858 0.858 0.858 0.858 0.91 0.926 0.937 0.95 0.97 0.976 0.976 0.982 0.985 0.987 0.989 0.99 0.993 0.993 0.994 0.995 0.998 0.998 0.99 0.998 0.999 0.998 0.999 0.998 0.998 0.999 0.998 0.998 0.999 0.998 0.999 0.998 0.998 0.999 0.998 0.999 0.998 0.999 0.998 0.999 0.998 0.999 0.998 0.999 0.998 0.999 0.998 0.999 0.998 0.999 0	60	PC 0.19 0.197 0.199 0.2 0.201 0.204 0.214 0.229 0.241 0.249		
65 PC 0.982 0.985 0.987 0.989 0.99 0.993 0.993 0.994 0.995 0.998 65 PC 0.988 0.999 1 66 LS 0 82	62	PC 0.499 0.59 0.71 0.744 0.781 0.812 0.819 0.835 0.851 0.836		
65 PC 0.998 0.999 1 66 LS 0 82	63 64	PC 0.982 0.985 0.987 0.989 0.99 0.993 0.994 0.995 0.998		
	65	PC 0.998 0.999 1		
	00			

```
EXISTING.OUT
                                     .131
 67
                          UD
                                 57B-3A
ONSITE BASIN 57B-3A
3.07
0.0259
0 85
.149
  68
69
70
71
72
73
                          KK
KM
PB
BA
LS
UD
                          KK
KM
HC
*
                                 CON1
COMBINE 57B-3A AND ON1
2
  74
75
76
  77
78
79
80
                           KK
KM
KM
RD
                                 RCON1
ROUTE CON1 TO CON2
LENGTH SLOPE n-VALUE
3020 .027 .040
                                                                                                                  WIDTH S-SLOPE
50 3
                                  57B-3B

OFFSITE BASIN 57B-3B

3.00

0.0513

0 85

.166
  81
82
83
84
85
86
                                  ON2
OFFSITE BASIN ON2
3.00
0.0273
0 82
.159
   87
88
89
90
91
92
                           KK
KM
PB
BA
LS
UD
                                                                                                                                                                                               PAGE 3
                                                                                     HEC-1 INPUT
                           ID.....1....2.....3.....4.....5.....6.....7.....8.....9.....10
LINE
                                   CON2
COMBINE CON1, 57B-3B AND ON2
   93
94
95
                                   57B-3D
OFFSITE BASIN 57B-3D
2.99
0.0184
0 87
  96
97
98
99
100
101
                            KK
KM
PB
BA
LS
UD
                                        .160
                                   ON3
ONSITE BASIN ON3
2.96
0.0040
0 82
                             KK
KM
PB
BA
LS
UD
  102
103
104
105
106
107
                                    CON3
COMBINE CON2, 57B-3D AND ON3
3
  108
109
110
                                    ON4
OFFSITE BASIN ON4
2.94
0.0073
0 82
.086
   111
112
113
114
115
116
                             KK
KM
PB
BA
LS
UD
                             KK
KM
HC
                                     CON4
COMBINE CON3 AND ON4
2
   117
118
119
                                    ON5
OFFSITE BASIN ON5
3.05
0.0147
0 82
.105
   120
121
122
123
124
125
                              KK
KM
PB
BA
LS
UD
                                     57B-3C

OFFSITE BASIN 57B-3C

3.05

0.0069

0 87

.118
   126
127
128
129
130
131
                              KK
KM
PB
BA
LS
UD
                                                                                                                                                                                                   PAGE 4
                                                                                       HEC-1 INPUT
                               ID.....1....2....3.....4.....5.....6.....7.....8.....9.....10
  LINE
                                     ON6
OFFSITE BASIN ON6
3.04
0.0035
0 93
.057
    132
133
134
135
136
137
                               KK
KM
PB
BA
LS
UD
                                      CON6
COMBINE 57B-3C AND ON6
2
                                                                                                         Page 2
```

1

1

EXISTING.OUT

```
141
142
143
                                                      KK
KM
HC
                                                                CCON6
                                                              COMBINE ON5 AND CON6
                         144
145
146
147
                                                      KK
KM
KM
                                                              RCCON6
ROUTE CCON6 TO CON8
LENGTH SLOPE n-VALUE
2015 .037 .040
                                                                                                                                                                        S-SLOPE
2
                                                                                                                            0
                                                                                                                                        TRAP
                                                              ON8
ONSITE BASIN ON8
2.99
0.0190
                                                      KK
KM
PB
BA
LS
UD
                                                                    .073
                                                                                         82
                                                      KK
KM
HC
                                                               CON8
COMBINE CCON6 AND ON8
                                                                SW11
0.589
3.34
0
                        157
158
159
160
161
                                                      KK
BA
PB
LS
UD
                                                                                    87.8
                                                              RSW11
ROUTE SW11 TO CSW17
FACTLITY = ANGEL PARK - CHARLESTON BOULEVARD
FACILITY # = APCB 0064, 0080
LINING = RCB
2338 0.0167 0.015 0 TRAP
                         162
163
164
165
166
167
                                                                                                                                                                                0
                                                                                                                      HEC-1 INPUT
                                                                                                                                                                                                                                              PAGE 5
                                                       ID.....1....2.....3.....4.....5.....6.....7.....8.....9.....10
                       LINE
                                                                SW17
0.356
3.30
0
                                                       KK
BA
PB
LS
UD
                         169
170
171
172
                                                                                     87.8
                                                       KK
KM
                                                               COMBINE RSW11 AND SW17
                         176
177
178
179
180
181
                                                               RCSW17
                                                               RCSW17
ROUTE CSW17 TO CSW18
FACILITY = ANGEL PARK - CHARLESTON BOULEVARD
FACILITY # = APCB 0000,0001,0019,0050
LINING = RCB
3600 0.014 0.015 0 TRAP 1
                                                                                                                                                                                0
                                                                                                                                                             11
                         182
183
184
185
186
                                                                 SW18
0.405
3.27
                                                       KK
BA
PB
LS
UD
                                                                                     86.8
                                                                 0.271
                                                       KK
KM
HC
*
                         187
188
189
                                                                  CSW18
                                                               COMBINE RCSW17 AND SW18
                                                              RCSW18
ROUTE CSW18 TO C12A
FACTLITY = ANGEL PARK SOUTH
FACTLITY # = APSO 0254,0255,0258,0345,0346; APCB 0000
NATURAL WASH
LENGTH = 5,200
SLOPE = 1.4%
N = 0.040
HYDRAULIC RADIUS = 1.5
VELOCITY = 9.2
2 0.157 0.15
                         190
191
192
193
194
195
196
197
198
199
200
                                                       KK
KM
KM
KM
KM
KM
KM
KM
KM
                                                                 12A
0.392
3.20
0
0.264
                         201
202
203
204
205
                                                       KK
BA
PB
LS
                                                                                     91.2
                                                                                                                       HEC-1 INPUT
                                                                                                                                                                                                                                               PAGE 6
1
                                                       ID.....1....2....3.....4.....5.....6.....7.....8.....9.....10
                       LINE
                         206
207
208
                                                               COMBINE 12A AND RCSW18
                                                       KM
HC
                                                               RC12A
ROUTE THRU 12B
FACILITY = ANGEL PARK SOUTH
FACILITY # = APSO 0204, 0205
NATURAL WASH
LENGTH = 2,600
                         209
210
211
212
213
214
                                                       KK
KM
KM
KM
KM
                                                                                                                                         Page 3
```

```
SLOPE = 3.5%
N = 0.040
HYDRAULIC RADIUS = 1.5
VELOCITY = 14.5
1 0.05 0.15
                      215
216
217
218
219
                                                   KM
KM
KM
KM
RM
                       220
221
222
223
224
                                                             12B
0.260
3.13
0
                                                   KK
BA
PB
LS
UD
                                                                                91.0
                                                             0.233
                                                           C12B
COMBINE 12B AND RC12A
2
                       225
226
227
                                                           57B-2A

OFFSITE BASIN 57B-2A

3.05

0.0098

0 87

.159
                        228
229
230
231
232
233
                                                    KK
KM
PB
BA
LS
UD
                                                           57B-3F

OFFSITE BASIN 57B-3F

3.05

0.0116

0 87

.142
                                                    KK
KM
PB
BA
LS
UD
                                                           57B-3E

OFFSITE BASIN 57B-3E

3.06

0.0251

0 87
                        240
241
242
243
244
245
                                                    KK
KM
PB
BA
LS
UD
                                                                 .214
                                                                                                                                                                                                                                  PAGE 7
                                                                                                                 HEC-1 INPUT
1
                                                     ID......1.....2.....3......4.....5.....6.....7.....8.....9......10
                      LINE
                        246
247
248
249
250
251
                                                            ON9
ONSITE BASIN ON9
3.06
0.0399
0 82
.232
                                                     KK
KM
PB
BA
LS
UD
*
                                                     KK
KM
HC
*
                                                            CON9
COMBINE C12B, 57B-2A, 57B-3F, 57B-3E AND ON9
5
                         252
253
254
                                                            RCON9
ROUTE CON9 TO CON10
LENGTH SLOPE n-VALUE
1540 .030 .040
                                                     KK
KM
KM
RD
                        255
256
257
258
                                                                                                                                                                 S-SLOPE
2
                                                                                                                                SHAPE
                                                                                                                                  TRAP
                                                            57B-3G

OFFSITE BASIN 57B-3G

2.99

0.0023

0 87

.072
                         259
260
261
262
263
264
                                                     KK
KM
PB
BA
LS
UD
                                                            57B-2B

OFFSITE BASIN 57B-2B

2.99

0.0047

0 87

.089
                          265
266
267
268
269
270
                                                      KK
KM
PB
BA
LS
UD
                                                             57B-2C
OFFSITE BASIN 57B-2C
2.96
0.0027
0 87
.069
                          271
272
273
274
275
276
                                                      KK
KM
PB
BA
LS
UD
                                                             ON10
ONSITE BASIN ON10
2.98
0.0177
0 82
.079
                          277
278
279
280
281
282
                                                       KK
KM
PB
BA
LS
UD
                                                                                                                                                                                                                                    PAGE 8
                                                                                                                   HEC-1 INPUT
  1
                                                       ID.....1....2....3....4.....5.....6.....7....8.....9.....10
                        LINE
                                                              CON10
COMBINE C57B-2A, 57B-3G, 57B-2B, 57B-2C AND 0N10
5
                           283
284
285
                                                       KK
KM
HC
*
                                                       KK
KM
HC
                                                               CCON10
COMBINE CON8 AND CON10
                           286
287
                           288
```

EXISTING.OUT

```
KK RCCON10
KM ROUTE CCON10 TO CON11
KM LENGTH SLOPE n-VALUE
RD 1040 .014 .040
                                                                                                               EXISTING.OUT
                   289
290
291
292
                                                                                                                                             S-SLOPE
2
                                                    ON11
ONSITE BASIN ON11
2.95
0.0157
0 82
.106
                    293
294
295
296
297
298
                                             KK
KM
PB
BA
LS
UD
                                              KK
KM
HC
                                                     CON11
COMBINE CCON10 AND ON11
2
                    299
300
301
                                                     CCON11
COMBINE CON4 AND CON11
2
                                                     57B-2D
OFFSITE BASIN 57B-2D
3.09
0.0088
                     305
306
307
308
309
310
                                              KK
KM
PB
BA
LS
UD
                                                                            91
                                                          .130
                                                     57B-2E
OFFSITE BASIN 57B-2E
3.08
0.0227
0 91
                     311
312
313
314
315
316
                                                         .102
                                                                                                                                                                                                              PAGE 9
                                                                                                       HEC-1 INPUT
1
                                               ID.....1....2....3.....4.....5.....6.....7.....8.....9.....10
                    LINE
                                               KK C57B-2E
KM COMBINE 57B-2D AND 57B-2E
HC 2
                      317
318
319
                                               KK 57B-2G1
KM OFFSITE BASIN 57B-2G1
PB 3.08
BA 0.0026
LS 0 87
UD .052
                      320
321
322
323
324
325
                                                      ON12
ONSITE BASIN ON12
3.08
0.0182
0 82
.121
                       326
327
328
329
330
331
                                                KK
KM
PB
BA
LS
UD
                                                       CON12
COMBINE C57B-2E, 57B-2G1 AND ON12
                                                 KK 57B-2G2
KM OFFSITE BASIN 57B-2G2
PB 3.03
BA 0.0073
LS 0 87
UD .094
                        335
336
337
338
339
340
                                                        ON13
ONSITE BASIN ON13
3.04
0.0187
0 82
.107
                        341
342
343
344
345
346
                                                  KK
KM
PB
BA
LS
UD
                                                         CON13
COMBINE CON12, 57B-2G2 AND ON13
3
                                                  KK
KM
HC
                         347
348
349
                                                          57B-2F
OFFSITE BASIN 57B-2F
3.03
                                                   KK
KM
PB
BA
LS
UD
                                                          0.0902
0
.167
                                                                                 91
                                                                                                                                                                                                                  PAGE 10
                                                                                                          HEC-1 INPUT
   1
                                                   ID.....1....2....3.....4.....5.....6.....7.....8.....9.....10
                        LINE
                                                  KK 57B-2H2

KM OFFSITE BASIN 57B-2H2

PB 3.04

BA 0.0156

LS 0 87

UD .182
                          356
357
358
359
360
361
                                                               ON14
                                                    KK
                          362
```

Page 5

```
ONSITE BASIN ON14
3.00
0.0054
0 82
.193
 363
364
365
366
367
                           KM
PB
BA
LS
UD
                                  CON14
COMBINE C57B-2F, 57B-2H2 AND ON14
3
                                  RCON14
ROUTE CON14 TO CON15
LENGTH SLOPE n-V/
2160 .032 .04
 371
372
373
374
                                                                                                                               S-SLOPE
2
                                                                                                                 WIDTH
                                                                                                SHAPE
                                                               n-VALUE
                                  57B-2I
OFFSITE BASIN 57B-2I
2.99
0.0072
0 87
.090
 375
376
377
378
379
380
                           KK
KM
PB
BA
LS
UD
                          KK 57B-2H1

KM OFFSITE BASIN 57B-2H1

PB 3.01

BA 0.0291

LS 0 87

UD .296
 381
382
383
384
385
386
                                  ON15
ONSITE BASIN ON15
2.98
                                  0.0351
0
.114
                                                         82
                                                                                                                                                                                             PAGE 11
                                                                                   HEC-1 INPUT
                           ID.....1....2....3....4....5.....6.....7....8.....9....10
LINE
 393
394
395
                                  CON15
COMBINE CON13, CON14, 57B-21, 57B-2H1 AND ON15
5
                                  ON16
ONSITE BASIN ON16
2.97
0.0180
0 82
.088
 396
397
398
399
400
401
                           KK
KM
PB
BA
LS
UD
*
 402
403
404
                           KK
KM
HC
                                   CON16
COMBINE CON15 AND ON16
2
                                   RCON16
ROUTE CON16 TO CON17
LENGTH SLOPE n-VALUE
1050 .036 .040
 405
406
407
408
                           KK
KM
KM
RD
                                                                                                                                S-SLOPE
2
                                                                                                 SHAPE
TRAP
                                                                                                                 WIDTH
20
                                  ON17
ONSITE BASIN ON17
2.93
0.0143
0 82
.066
 409
410
411
412
413
414
                           KK
KM
PB
BA
LS
UD
                                   CON17
COMBINE CON16 AND ON17
2
 415
416
417
                           KK
KM
HC
                           KK
KM
KM
RD
                                   RCON17
ROUTE CON17 TO CON21
LENGTH SLOPE n-VA
1160 .027 .04
 418
419
420
421
                                                                                                                                S-SLOPE
2
                                                                n-VALUE
.040
                                                                                                 SHAPE
TRAP
                                                                                                                  WIDTH
30
                                   57B-4A

OFFSITE BASIN 57B-4A

2.93

0.0070

0 82

.102
 422
423
424
425
426
427
                           KK
KM
PB
BA
LS
UD
                                                                                                                                                                                             PAGE 12
                                                                                   HEC-1 INPUT
                            ID.....1.....2.....3.....4.....5.....6......7.....8.....9.....10
LINE
                                   CCON17
COMBINE CCON11, CON17 AND 57B-4A
                                   ON21
ONSITE BASIN ON21
2.91
0.0348
0 82
.195
 431
432
433
434
435
436
                            KK
KM
PB
BA
LS
UD
                                                                                                    Page 6
```

1

1

EXISTING.OUT

EXISTING.OUT

```
437
438
439
                                                               CON21
                                                            COMBINE CCON17 AND ON21
                        440
441
442
443
444
                                                              13B-1
0.249
3.19
                                                     KK
                                                    BA
PB
LS
                                                              0.284
                                                                                 91.6
                                                     UD
                                                    KK RC13B-1

KM ROUTE 13B-1 TO C13B-2

KM GRIFFITH PARK DRIVE AND HUALAPAI WAY

RD 3000 0.018 0.016 0 TRAP
                        445
446
447
448
                                                                                                                                                          0
                                                                                                                                                                        50
                                                              13B-2
0.216
3.14
0
0.231
                        449
450
451
452
453
                                                     KK
BA
PB
LS
UD
                                                                                  89.7
                        454
455
456
457
                                                     KK
KM
KM
HC
                                                            C13B-2
COMBINE 13B-2 AND RC13B-1
HUALAPAI WAY AND LOCAL FACILITY
2
                                                    KK RC13B-2

KM ROUTE C13B-2 TO CCPIC-A

KM LINING = GRASS

RD 4900 0.021 0.03
                        458
459
460
                                                                                                                         0
                                                                                                                                   TRAP
                        461
                                                                                                                                                                                                                                      PAGE 13
1
                                                                                                                   HEC-1 INPUT
                                                     ID.....1....2.....3.....4.....5.....6.....7.....8.....9.....10
                      LINE
                                                              19A
0.253
3.25
0
0.351
                        462
463
464
465
466
                                                     KK
BA
PB
LS
UD
                                                                                  89.9
                                                             R19A
ROUTE 19A TO C13A-1
UNNAMED ROAD
4300 0.021 0.016
                        467
468
469
470
                                                     KK
KM
KM
RD
                                                                                                                                                                        50
                                                                                                                         0
                                                                                                                                   TRAP
                                                                                                                                                          0
                         471
472
473
474
475
                                                               13A-1
0.224
3.19
0
                                                     KK
BA
PB
LS
UD
*
                                                                                  91.4
                                                                0.302
                                                             C13A-1
COMBINE 13A-1 AND R19A
TOWN CENTER DRIVE AND SWALE
2
                         476
477
478
479
                                                      KK
KM
KM
HC
                                                     KK RC13A-1

KM ROUTE C13A-1 TO C13A-2

KM NATURAL WASH

KM TRAVEL LENGTH = 2,800

KM SLOPE = 2.1%

KM N = 0.040

KM N = 0.040

KM YDRAULIC RADIUS = 1.5

KM VELOCITY = 11.4

RM 1 0.068 0.15
                         480
481
482
483
484
485
486
487
488
                         489
490
491
492
493
                                                                13A-2
                                                      KK
BA
PB
LS
UD
                                                                0.188
3.15
0
                                                                                  90.0
                                                                0.236
                                                     KK
KM
HC
                         494
495
496
                                                              COMBINE 13A-2 AND RC13A-1
                                                                                                                                                                                                                                       PAGE 14
                                                                                                                    HEC-1 INPUT
1
                                                      ID.....1....2.....3....4.....5.....6.....7.....8.....9.....10
                       LINE
                                                      KK RC13A-2

KM ROUTE C13A-2 TO CPIC-C

KM LINING = GRASS

RD 5200 0.015 0.03
                         497
498
499
500
                                                                                                                          0
                                                                                                                                                         40
                                                                                                                                                                           4
                                                                                                                                    TRAP
                         501
502
503
504
505
                                                                PIC-C
0.243
3.08
                                                      KK
BA
PB
LS
UD
                                                                0.373
                                                                                   90.4
                         506
507
508
                                                              COMBINE PIC-C AND RC13A-2
```

Page 7

EXISTING.OUT

```
KK RCPIC-C
KM ROUTE CPIC-C TO CPIC-A
KM LINING = GRASS
RD 2200 0.025 0.03
                                                                                                                                             40
                                                                                                                          TRAP
                      513
514
515
516
517
                                                          PIC-A
0.359
3.03
                                                 KK
BA
PB
LS
UD
                                                                            91.1
                                                          0.499
                                                 KK
KM
HC
                                                        CPIC-A
COMBINE RCPIC-C AND PIC-A
2
                      518
519
520
                                                 KK CCPIC-A
KM COMBINE CPIC-A AND RC13B-2
HC 2
                                                       ON18
ONSITE BASIN ON18
2.95
0.0317
0 82
.224
                       524
525
526
527
528
529
                                                 KK
KM
PB
BA
LS
UD
                                                                                                                                                                                                                       PAGE 15
                                                                                                           HEC-1 INPUT
1
                                                  ID......1.....2.....3......4.....5.....6.....7.....8......9.....10
                     LINE
                                                         CON18
COMBINE CCPIC-A AND ON18
2
                       530
531
532
                                                         57B-1A

OFFSITE BASIN 57B-1A

2.96

0.0443

0 85

.179
                       533
534
535
536
537
538
                                                  KK
KM
PB
BA
LS
UD
                                                          57B-1B

OFFSITE BASIN 57B-1B

2.91

0.0301

0 93

.150
                       539
540
541
542
543
544
                                                   KK
KM
PB
BA
LS
UD
                                                          ON19
ONSITE BASIN ON19
2.92
0.0100
0 82
.092
                        545
546
547
548
549
550
                                                   KK
KM
PB
BA
LS
UD
                                                           CON19
COMBINE CON18, 57B-1A, 57B-1B AND ON19
                                                    KK
KM
KM
RD
                                                           RCON19
ROUTE CON19 TO CON20
LENGTH SLOPE n-VALUE
1480 .024 .040
                         554
555
556
557
                                                                                                                                             WIDTH S-SLOPE
50 2
                                                                                                                   0
                                                          57B-1C

OFFSITE BASIN 57B-1C

2.89

0.0009

0 96

.065
                         558
559
560
561
562
563
                                                    KK
KM
PB
BA
LS
UD
*
                                                          ON20
ONSITE BASIN ON20
2.89
0.0104
0 82
.114
                         564
565
566
567
568
569
                                                                                                                                                                                                                           PAGE 16
                                                                                                              HEC-1 INPUT
   1
                                                     ID.....1....2....3.....4.....5.....6.....7.....8.....9.....10
                        LINE
                                                             \begin{array}{c} \text{CON20} \\ \text{COMBINE} \\ 3 \end{array} \text{CON19, 57B-1C AND ON20} 
                                                             RCON20
ROUTE CON20 TO CON22
LENGTH SLOPE n-VALUE
700 .063 .040
                                                     KK
KM
KM
RD
                                                                                                                                              WIDTH S-SLOPE
30 2
                                                                                                                             SHAPE
                                                                                                                    0
                                                            57B-4B
OFFSITE BASIN 57B-4B
2.91
0.0110
                                                                                                                                Page 8
```

```
.071
                                                                96
                                      LS
UD
                                           57B-4C
OFFSITE BASIN 57B-4C
2.90
0.0122
0 96
               583
584
585
586
587
588
                                      KK
KM
PB
BA
LS
UD
                                               .118
                                      KK C57B-4C
KM COMBINE 57B-4B AND 57B-4C
HC 2
                589
590
591
                                            ON22
ONSITE BASIN ON22
2.88
0.0133
0 82
                592
593
594
595
596
597
                                      KK
KM
PB
BA
LS
UD
                                                .071
                                             CON22
COMBINE CON21, CON20, C57B-4C AND ON22
                                      KK
KM
HC
                598
599
600
                                            57B-1
OFFSITE BASIN 57B-1
0.0485
2.89
0 93.7
0.173
                601
602
603
604
605
606
                                       KK
KM
BA
PB
LS
UD
                                                                                                                                                                                   PAGE 17
                                                                                       HEC-1 INPUT
                                       ID......1.....2.....3.....4.....5.....6.....7.....8.....9......10
               LINE
                                             57B-3
OFFSITE BASIN 57B-3
0.0481
3.06
0 89.3
                607
608
609
610
611
612
                                       KK
KM
BA
PB
LS
UD
                                               0.256
                                             57B-4
OFFSITE BASIN 57B-4
0.1293
2.91
0 93.8
0.202
                 613
614
615
616
617
618
                                       KK
KM
BA
PB
LS
UD
                                              C57B-4
COMBINE 57B-3 AND 57B-4
2
                                               PIC-B
0.441
2.98
0
0.471
                                        KK
BA
PB
LS
UD
                                                               91.1
                                              RPIC-B
ROUTE PIC-B TO CC57B-4
FACTLITY = ANGEL PARK -
FACILITY # = APP1 0000
LINING = RCP
2982 0.024 0.013
                                                                                                   CIRC
                                        KK CC57B-4
KM COMBINE CON22, C57B-1, RPIC-B, AND C57B-4
HC 4
                         SCHEMATIC DIAGRAM OF STREAM NETWORK
INPUT
LINE
                                                   (--->) DIVERSION OR PUMP FLOW
                  (V) ROUTING
                                                    (<---) RETURN OF DIVERTED OR PUMPED FLOW
   NO.
                  (.) CONNECTOR
                      ON1
    54
                                      57B-3A
     68
                     CON1.....
     74
                    RCON1
     77
     81
                                      57B-3B
                                                               on2
     87
                     CON2.....
     93
                                      57B-3D
     96
                                                                                                        Page 9
```

1

1

EXISTING.OUT

EXISTING.OUT

					EXISTING.OUT
462	:		19A V		EXESTENCE:001
467	:		V R19A		
471	:	:	:	13A-1	
	:			*	
476	:		C13A-1 V V		
480	:	:	RC13A-1		
489	:	:		13A-2	
494	:		c13A-2		
407	:		V V		
497	:	:	RC13A-2		
501	:		:	PIC-C	
506	:		CPIC-C		
509	:	:	V RCPIC-C		
F1.2	:	:	:	DTC 4	
513	:			PIC-A	
518	:	:	CPIC-A		
521	:	CCPIC-A	:		
524	:	:	ON18		
530	:	CON18			
533	:		57B-1A		
	:		370 17		
539	:			57B-1B	
545	:	:	:	:	ON19
551	:	CON19 V	:		
554		RCON19			
558	:		57B-1C		
564	:	:	:	on20	
570	:	CON20		:	
573	:	V V RCON20			
	:				
577	:		57B-4B		
583	:	:		57B-4C	
589	:	:	С57в-4С		
592	:	:	:	on22	
F00		:	:	:	
598	CON22				
601	:	57B-1			
607	:	:	57B-3		
613	:		:	57B-4	
619			с57в-4		
	:	:			
622				PIC-B V V	
627	:			RPIC-B	
(***) R 1*****	UNOFF ALSO	COMPUTED AT	THIS LOCATI	ON	
					Page 12

U.S. ARMY CORPS OF ENGINEERS HYDROLOGIC ENGINEERING CENTER 609 SECOND STREET DAVIS, CALIFORNIA 95616 (916) 756-1104

REFERENCED HYDROLOGIC MODELS:
2013 LAS VEGAS VALLEY FLOOD CONTROL MASTER PLAN UPDATE
CITY OF LAS VEGAS CITY WIDE HYDROLOGY ANALYSIS (PBS&J 1997)
CLARK COUNTY REGIONAL FLOOD CONTROL DISTRICT 2008 MASTER PLAN UPDATE
GOWAN WATERSHED (ALL)
RECOMMENDED DRAINAGE SYSTEM WITH ULTIMATE DEVELOPMENT
INPUT FILE = ALLGOW3.DAT
INPUT FILE = ALGOW3.DAT
INPUT FILE DATE = MAY 5, 2008
DESIGN STORM = 100-YEAR 6-HR STORM
STORM DISTRIBUTION = SDN #3
MODELED BY PBS&J (MICHELE L. D'ALESSANDRO, E.I., CFM)
CHECKED BY PBS&J (HARSHAL B. DESAI, P.E., CFM)
STORM CENTERING = FULL WATERSHED
JR CARDS CONTAIN DARFS BASED ON THE FOLLOWING VALUES:

AREA SQ. MI. 0.99 0.5-1 0.95 1-2 0.95 2-3 0.925 3-4 0.915 4-5 0.908 5-6 0.903 6-7 0.895 10yr 0.570

JR CARD RATIOS REPRESENT DEPTH-AREA REDUCTION FACTORS (DARF'S) 100-YEAR, 6-HOUR STORM, SDN3

51 IO OUTPUT CONTROL VARIABLES

IPRNT 5
IPLOT 0 PLOT CONTROL
QSCAL 0. HYDROGRAPH PLOT SCALE

THYDROGRAPH TIME DATA

NNIN 5

IDATE 1 0

ITTIME 0000

NQ 650

NDDATE 3 0

NDDATE 3 0

NDTIME 0605

NDTIME 0605

NDTIME 0605

ENDING DATE

ICENT 19 CENTURY MARK

COMPUTATION INTERVAL .08 HOURS TOTAL TIME BASE 54.08 HOURS

ENGLISH UNITS

DRAINAGE AREA
PRECIPITATION DEPTH
LENGTH, ELEVATION
FLOW
STORAGE VOLUME
SURFACE AREA
TEMPERATURE

DEGREES FAHRENHEIT

JP MULTI-PLAN OPTION

NPLAN 1 NUMBER OF PLANS

JR

1

MULTI-RATIO OPTION
RATIOS OF PRECIPITATION
.99 .98 .95 .93 .92 .91 .90 .89 .57

PEAK FLOW AND STAGE (END-OF-PERIOD) SUMMARY FOR MULTIPLE PLAN-RATIO ECONOMIC COMPUTATIONS FLOWS IN CUBIC FEET PER SECOND, AREA IN SQUARE MILES TIME TO PEAK IN HOURS

					RA	TIOS APPL	IED TO PR	ECIPITATI	.ON				
OPERATION	STATION	AREA	PLAN		RATIO 1	RATIO 2	RATIO 3	RATIO 4	RATIO 5	RATIO 6	RATIO 7	RATIO 8	RATIO 9
					.99	.98	.95	.93	.92	.91	.90	.89	57
						.50		. 33	. 32	. 51	. 50	.05	
UNIDEOCRADUL AT													
HYDROGRAPH AT	0.11	0.4	-	=1 011	50	40	47	45		43	42	40	10
+	ON1	.04	T	FLOW	50.	49.	47.	45.	44. 3.58	43.	43.	42.	18.
				TIME	(3.58	3.58	3.58	3.58	3.58	3.58	3.58	3.58	3.58
					No. of Concession,								
HYDROGRAPH AT					The state of the s								
in blocked in 711	57B-3A	.03	1	FLOW	36.	35.	34.	32.	32.	31.	31.	31.	14.
+	37B-3A	.03	т.	FLOW		55.	2 24.	32.	32.	31.	31.	31.	14.
					The same of the sa	Page 1	3						

				TIME	3.58	XISTING.C 3.58	OUT 3.58	3.58	3.58	3.58	3.58	3.58	3.58
2 COMBINED AT +	CON1	.07	1	FLOW TIME	86.	84. 3.58	80. 3.58	77. 3.58	76. 3.58	75. 3.58	74. 3.58	73. 3.58	32. 3.58
ROUTED TO +	RCON1	.07	1	FLOW TIME	86. 3.75	84. 3.75	80. 3.75	77. 3.75	76. 3.75	75. 3.75	74. 3.75	73. 3.75	30. 3.83
HYDROGRAPH AT +	57B-3B	.05	1	FLOW TIME	66.	65. 3.58	62. 3.58	59. 3.58	58. 3.58	58. 3.58	57. 3.58	56. 3.58	25. 3.58
HYDROGRAPH AT +	on2	.03	1	FLOW TIME	31. 3.58	30. 3.58	29. 3.58	28. 3.58	27. 3.58	27. 3.58	27. 3.58	26. 3.58	11. 3.58
3 COMBINED AT	CON2	.14	1	FLOW TIME	164. 3.67	160. 3.67	153. 3.67	145. 3.67	143. 3.67	141. 3.67	139. 3.67	137. 3.67	55. 3.75
HYDROGRAPH AT +	57B-3D	.02	1	FLOW TIME	26. 3.58	25. 3.58	24. 3.58	23. 3.58	23. 3.58	23. 3.58	23. 3.58	22. 3.58	11. 3.58
HYDROGRAPH AT +	on3	.00	1	FLOW TIME	6.3.50	6. 3.50	6. 3.50	5. 3.50	5. 3.50	5. 3.50	5. 3.50	5. 3.50	2. 3.50
3 COMBINED AT	CON3	.17	1	FLOW TIME	189. 3.67	185. 3.67	177. 3.67	169. 3.67	165. 3.67	163. 3.67	161. 3.67	159. 3.67	64. 3.75
HYDROGRAPH AT +	on4	.01	1	FLOW TIME	9. 3.50	9. 3.50	9. 3.50	8. 3.50	8. 3.50	8. 3.50	8. 3.50	8. 3.50	3. 3.50
2 COMBINED AT	CON4	.17	1	FLOW TIME	195. 3.67	190. 3.67	182. 3.67	173. 3.67	170. 3.67	168. 3.67	166. 3.67	164. 3.67	66. 3.75
HYDROGRAPH AT +	on5	.01	1	FLOW TIME	18. 3.50	18. 3.58	17. 3.58	16. 3.58	16. 3.58	16. 3.58	16. 3.58	16. 3.58	7. 3.58
HYDROGRAPH AT +	57B-3C	.01	1	FLOW TIME	11.	10. 3.58	10. 3.58	10. 3.58	9. 3.58	9. 3.58	9. 3.58	9. 3.58	4. 3.58
HYDROGRAPH AT +	on6	.00	1	FLOW TIME	8.3.50	8. 3.50	8. 3.50	7. 3.50	7. 3.50	7. 3.50	7. 3.50	7. 3.50	4. 3.50
2 COMBINED AT	CON6	.01	1	FLOW TIME	18. 3.50	18. 3.50	17. 3.50	16. 3.50	16. 3.50	16. 3.50	16. 3.50	16. 3.50	8. 3.50
2 COMBINED AT	CCON6	.03	1	FLOW TIME	36. 3.50	36. 3.50	34. 3.50	33. 3.50	32. 3.50	32. 3.50	32. 3.50	31. 3.50	14. 3.50
ROUTED TO +	RCCON6	.03	1	FLOW TIME	34. 3.67	33. 3.67	32. 3.67	31. 3.67	30. 3.67	30. 3.67	30. 3.67	29. 3.67	14. 3.67
HYDROGRAPH AT	ON8	.02	1	FLOW TIME	27. 3.50	26. 3.50	25. 3.50	24. 3.50	23. 3.50	23. 3.50	23. 3.50	22. 3.50	9. 3.50
2 COMBINED AT	CON8	.04	1	FLOW TIME	54. 3.58	53. 3.58	50. 3.58	48. 3.58	47. 3.58	47. 3.58	46. 3.58	46. 3.58	19. 3.67
HYDROGRAPH AT +	SW11	.59	1	FLOW TIME	759. 3.75	743. 3.75	717. 3.75	691. 3.75	680. 3.75	673. 3.75	668. 3.75	660. 3.75	330. 3.75
ROUTED TO	RSW11	.59	1	FLOW TIME	754. 3.75	738. 3.75	712. 3.75	686. 3.75	676. 3.75	668. 3.75	663. 3.75	655. 3.75	325. 3.75
HYDROGRAPH AT	SW17	.36	1	FLOW TIME	479. 3.67	469. 3.67	452. 3.67	436. 3.67	429. 3.67	424. 3.67	421. 3.67	416. 3.67	205. 3.67
2 COMBINED AT	CSW17	.94	1	FLOW TIME	1221. 3.75	1196. 3.75	1153. 3.75	1111. 3.75	1095. 3.75	1083. 3.75	1075. 3.75	1061. 3.75	530. 3.75
ROUTED TO +	RCSW17	.94	1	FLOW TIME	1211. 3.75	1186. 3.75	1143. 3.75	1101. 3.75	1083. 3.75	1073. 3.75	1063. 3.75	1051. 3.75	521. 3.75
HYDROGRAPH AT +	SW18	.41	1	FLOW TIME	519. 3.67	507. 3.67	489. 3.67	470. 3.67	463. 3.67	457. 3.67	454. 3.67	448. 3.67	215. 3.75
2 COMBINED AT	CSW18	1.35	1	FLOW TIME	1718. 3.75	1682. 3.75	1622. 3.75	1562. 3.75	1537. 3.75	1521. 3.75	1508. 3.75	1490. 3.75	736. 3.75
ROUTED TO +	RCSW18	1.35	1	FLOW TIME	1610. 3.92	1576. 3.92	1520. 3.92	1464. 3.92	1441. 3.92	1426. 3.92	1414. 3.92	1397. 3.92	690. 3.92
HYDROGRAPH AT	12A	.39	1	FLOW TIME	576. 3.67	565. 3.67	547. 3.67	529. 3.67	521. 3.67	516. 3.67	513. 3.67	507. 3.67	272. 3.67
2 COMBINED AT	C12A	1.74	1	FLOW	2046.	2003.	1932.	1861.	1832.	1813.	1798.	1776.	881.
						Page 14							

				TIME	3.83	ISTING.OUT	T 3.83	3.83	3.83	3.83	3.83	3.83	3.83
ROUTED TO	RC12A	1.74	1	FLOW TIME	2025. 3.92	1983. 3.92	1913. 3.92	1843. 3.92	1815. 3.92	1796. 3.92	1782. 3.92	1760. 3.92	880. 3.92
HYDROGRAPH AT	12в	.26	1	FLOW TIME	387. 3.67	380. 3.67	367. 3.67	355. 3.67	350. 3.67	347. 3.67	344. 3.67	340. 3.67	182. 3.67
2 COMBINED AT	C12B	2.00	1	FLOW TIME	2259. 3.83	2212.	2134. 3.83	2056. 3.83	2024. 3.83	2002. 3.83	1987. 3.83	1962. 3.83	990. 3.92
HYDROGRAPH AT	57B-2A	.01	1	FLOW TIME	14. 3.58	14. 3.58	13. 3.58	13. 3.58	13. 3.58	13. 3.58	12. 3.58	12. 3.58	6. 3.58
HYDROGRAPH AT	57B-3F	.01	1	FLOW TIME	17. 3.58	17. 3.58	16. 3.58	16. 3.58	15. 3.58	15. 3.58	15. 3.58	15. 3.58	7. 3.58
HYDROGRAPH AT	57B-3E	.03	1	FLOW TIME	32. 3.67	31. 3.67	30. 3.67	29. 3.67	29. 3.67	28. 3.67	28. 3.67	28. 3.67	13. 3.67
HYDROGRAPH AT	on9	.04	1	FLOW TIME	41. 3.67	40. 3.67	38. 3.67	36. 3.67	36. 3.67	35. 3.67	35. 3.67	34. 3.67	14. 3.67
5 COMBINED AT	CON9	2.09	1	FLOW TIME	2330. 3.83	2281. 3.83	2200. 3.83	2120. 3.83	2087. 3.83	2064. 3.83	2048. 3.83	2023. 3.83	1012. 3.92
ROUTED TO	RCON9	2.09	1	FLOW TIME	2307. 3.92	2259. 3.92	2181. 3.92	2103. 3.92	2071. 3.92	2048. 3.92	2032. 3.92	2007. 3.92	1012. 3.92
HYDROGRAPH AT	57B-3G	.00	1	FLOW TIME	3.50	4. 3.50	4. 3.50	4. 3.50	4. 3.50	4. 3.50	3. 3.50	3. 3.50	2. 3.50
HYDROGRAPH AT	57B-2B	.00	1	FLOW TIME	8.	7. 3.50	7. 3.50	7. 3.50	7. 3.50	7. 3.50	7. 3.50	7. 3.50	3. 3.50
HYDROGRAPH AT	57B-2C	.00	1	FLOW TIME	3.50	5. 3.50	4. 3.50	4. 3.50	4. 3.50	4. 3.50	4. 3.50	4. 3.50	3.50
HYDROGRAPH AT	ON10	.02	1	FLOW TIME	24. 3.50	23. 3.50	22. 3.50	21. 3.50	21. 3.50	21. 3.50	21. 3.50	20. 3.50	8. 3.50
5 COMBINED AT	CON10	2.12	1	FLOW TIME	2314. 3.92	2266. 3.92	2188. 3.92	2110.	2077. 3.92	2055. 3.92	2039. 3.92	2014. 3.92	1015. 3.92
2 COMBINED AT	CCON10	2.16	1	FLOW TIME	2335. 3.92	2286. 3.92	2208. 3.92	2128. 3.92	2096. 3.92	2073. 3.92	2057. 3.92	2032. 3.92	1025. 3.92
ROUTED TO	RCCON10	2.16	1	FLOW TIME	2331. 3.92	2283. 3.92	2206. 3.92	2124. 3.92	2092. 3.92	2069. 3.92	2052. 3.92	2028. 3.92	1015. 3.92
HYDROGRAPH AT	ON11	.02	1	. FLOW TIME	19. 3.58	18. 3.58	17. 3.58	17. 3.58	16. 3.58	16. 3.58	16. 3.58	16. 3.58	7. 3.58
2 COMBINED AT	CON11	2.18	1	. FLOW TIME	2336. 3.92	2288. 3.92	2210. 3.92	2128. 3.92	2096. 3.92	2074. 3.92	2056. 3.92	2032. 3.92	1017. 3.92
2 COMBINED AT	CCON11	2.35		L FLOW TIME	2443. 3.92	2393. 3.92	2312. 3.92	2227. 3.92	2193. 3.92	2170. 3.92	2152. 3.92	2126. 3.92	1065. 3.92
HYDROGRAPH AT +	57B-2D	.01		L FLOW TIME	16. 3.58	15. 3.58	15. 3.58	14. 3.58	14. 3.58	14. 3.58	14. 3.58	14. 3.58	7. 3.58
HYDROGRAPH AT	57B-2E	.02		1 FLOW TIME	42. 3.50	41. 3.50	40. 3.50	38. 3.50	38. 3.50	37. 3.50	37. 3.50	37. 3.50	19. 3.50
2 COMBINED AT	- C57B-2E	.03		1 FLOW TIME	56. 3.50	55. 3.50	53. 3.50	52. 3.50	51. 3.50	50. 3.50	50. 3.50	49. 3.50	26. 3.50
HYDROGRAPH AT	57B-2G1	.00		1 FLOW TIME	3.50	3.50	5. 3.50	5. 3.50	5. 3.50	4. 3.50	4. 3.50	4. 3.50	3.50
HYDROGRAPH AT +	on12	.02		1 FLOW TIME	23. 3.58	23. 3.58	22. 3.58	21. 3.58	20. 3.58	20. 3.58	20. 3.58	20. 3.58	8. 3.58
3 COMBINED A	T CON12	.05		1 FLOW TIME	83. 3.50	81. 3.50	78. 3.50	75. 3.50	74. 3.50	73. 3.50	73. 3.50	72. 3.50	36. 3.58
HYDROGRAPH AT	57B-2G2	.01		1 FLOW TIME	12. 3.50	11. 3.50	11. 3.50	11. 3.50	10. 3.50	10. 3.50	10. 3.50	10. 3.50	5. 3.50
HYDROGRAPH AT	ON13	.02		1 FLOW TIME	23. 3.58	23. 3.58	22. 3.58	. 21. 3 3.58		20. 3 3.58	20. 3.58	20. 3.58	8. 3.58
3 COMBINED A	CON13	.08		1 FLOW	118.	115. Page	111	. 107	. 105	. 104.	. 103.	101.	49.

				TIME	3.50	XISTING.C 3.50	ЭUТ 3.50	3.50	3.50	3.50	3.50	3.50	3.58
HYDROGRAPH AT +	57B-2F	.09	1	FLOW TIME	147. 3.58	145. 3.58	140. 3.58	135. 3.58	133. 3.58	132. 3.58	131. 3.58	129. 3.58	69. 3.58
HYDROGRAPH AT +	57в-2н2	.02	1	FLOW TIME	21. 3.58	21. 3.58	20. 3.58	19. 3.58	19. 3.58	19. 3.58	19. 3.58	18. 3.58	9. 3.58
HYDROGRAPH AT +	ON14	.01	1	FLOW TIME	6. 3.58	5. 3.58	5. 3.58	5. 3.58	5. 3.58	5. 3.58	5. 3.58	5. 3.58	2. 3.67
3 COMBINED AT	CON14	.11	1	FLOW TIME	174. 3.58	171. 3.58	165. 3.58	159. 3.58	157. 3.58	155. 3.58	154. 3.58	152. 3.58	79. 3.58
ROUTED TO	RCON14	.11	1	FLOW TIME	166. 3.67	163. 3.67	158. 3.67	156. 3.67	153. 3.67	152. 3.67	151. 3.67	146. 3.67	79. 3.67
HYDROGRAPH AT +	57B-2I	.01	1	FLOW TIME	12. 3.50	11. 3.50	11. 3.50	10. 3.50	10. 3.50	10. 3.50	10. 3.50	10. 3.50	5. 3.50
HYDROGRAPH AT	57в-2н1	.03	1	FLOW TIME	32. 3.75	31. 3.75	30. 3.75	29. 3.75	29. 3.75	28. 3.75	28. 3.75	28. 3.75	13. 3.75
HYDROGRAPH AT	ON15	.04	1	FLOW TIME	42.	41. 3.58	40. 3.58	38. 3.58	37. 3.58	37. 3.58	36. 3.58	36. 3.58	15. 3.58
5 COMBINED AT +	CON15	.26	1	FLOW TIME	346. 3.58	338. 3.58	326. 3.58	314. 3.58	309. 3.58	306. 3.58	303. 3.58	298. 3.58	142. 3.58
HYDROGRAPH AT +	ON16	.02	1	FLOW TIME	23. 3.50	23. 3.50	22. 3.50	21. 3.50	20. 3.50	20. 3.50	20. 3.50	20. 3.50	8. 3.50
2 COMBINED AT	CON16	.28	1	FLOW TIME	367. 3.58	359. 3.58	345. 3.58	333. 3.58	327. 3.58	324. 3.58	321. 3.58	316. 3.58	150. 3.58
ROUTED TO +	RCON16	.28	1	FLOW TIME	354. 3.58	346. 3.58	333. 3.58	320. 3.58	315. 3.58	311. 3.58	309. 3.58	303. 3.58	149. 3.67
HYDROGRAPH AT +	ON17	.01	1	FLOW TIME	20. 3.50	20. 3.50	19. 3.50	18. 3.50	18. 3.50	17. 3.50	17. 3.50	17. 3.50	7. 3.50
2 COMBINED AT +	CON17	.29	1	FLOW TIME	368. 3.58	360. 3.58	347. 3.58	333. 3.58	328. 3.58	323. 3.58	321. 3.58	316. 3.58	153. 3.67
ROUTED TO +	RCON17	.29	1	FLOW TIME	356. 3.67	350. 3.67	337. 3.67	328. 3.67	321. 3.67	319. 3.67	318. 3.67	309. 3.67	149. 3.67
HYDROGRAPH AT +	57B-4A	.01	1	FLOW TIME	8.	8. 3.50	8. 3.50	7. 3.50	7. 3.50	7. 3.50	7. 3.50	7. 3.50	3. 3.58
3 COMBINED AT +	CCON17	2.65	1	FLOW TIME	2716. 3.83	2660. 3.83	2567. 3.83	2472.	2434. 3.83	2407. 3.83	2388. 3.83	2359. 3.83	1171. 3.92
HYDROGRAPH AT +	ON21	.03	1	FLOW TIME	34. 3.58	33. 3.58	32. 3.67	30. 3.67	30. 3.67	29. 3.67	29. 3.67	29. 3.67	12. 3.67
2 COMBINED AT +	CON21	2.68	1	FLOW TIME	2740. 3.83	2683. 3.83	2589. 3.83	2493. 3.83	2455. 3.83	2427. 3.83	2408. 3.83	2378. 3.83	1177. 3.92
HYDROGRAPH AT +	13B-1	.25	1	FLOW TIME	354. 3.67	347. 3.67	336. 3.67	325. 3.67	321. 3.67	318. 3.67	315. 3.67	312. 3.67	169. 3.75
ROUTED TO +	RC13B-1	.25	1	FLOW TIME	354. 3.75	347. 3.75	336. 3.75	324. 3.75	320. 3.75	317. 3.75	314. 3.83	311. 3.83	171. 3.83
HYDROGRAPH AT +	13B-2	.22	1	FLOW TIME	310. 3.67	304. 3.67	294. 3.67	283. 3.67	279. 3.67	277. 3.67	274. 3.67	271. 3.67	140. 3.67
2 COMBINED AT +	C13B-2	.47	1	FLOW TIME	634.	622. 3.75	602. 3.75	581. 3.75	573. 3.75	567. 3.75	563. 3.75	557. 3.75	294. 3.75
ROUTED TO +	RC13B-2	.47	1	FLOW TIME	641.	628. 3.83	607. 3.83	586. 3.83	578. 3.83	572. 3.83	568. 3.83	561. 3.83	295. 3.92
HYDROGRAPH AT +	19A	.25	1	FLOW TIME	318. 3.75	312. 3.75	301. 3.75	291. 3.75	287. 3.75	284. 3.75	282. 3.75	278. 3.75	144. 3.75
ROUTED TO +	R19A	.25	1	FLOW TIME	319. 3.92	313. 3.92	302. 3.92	292. 3.92	288. 3.92	285. 3.92	283. 3.92	280. 3.92	146. 3.92
HYDROGRAPH AT +	13A-1	.22	1	FLOW TIME	308. 3.75	303. 3.75	293. 3.75	283. 3.75	279. 3.75	277. 3.75	275. 3.75	272. 3.75	147. 3.75
2 COMBINED AT	C13A-1	.48	1	FLOW	595.	583. Page 16	564.	545.	537.	532.	528.	522.	273.
					Section 1	J- 30							

				TIME	3.83	EXISTING.C 3.83	OUT 3.83	3.83	3.83	3.83	3.83	3.83	3.83
ROUTED TO +	RC13A-1	.48	1	FLOW TIME	581. 3.92	569. 3.92	551. 3.92	532. 3.92	524. 3.92	519. 3.92	515. 3.92	509. 3.92	268. 3.92
HYDROGRAPH AT +	13A-2	.19	1	FLOW TIME	272. 3.67	267. 3.67	258. 3.67	249. 3.67	246. 3.67	243. 3.67	241. 3.67	238. 3.67	124. 3.67
2 COMBINED AT	C13A-2	.66	1	FLOW TIME	782. 3.83	766. 3.83	740. 3.83	715. 3.83	704. 3.83	697. 3.83	692. 3.83	684. 3.83	354. 3.83
ROUTED TO +	RC13A-2	.66	1	FLOW TIME	781. 3.92	765. 3.92	738. 3.92	712. 3.92	702. 3.92	694. 3.92	689. 3.92	681. 3.92	354. 4.00
HYDROGRAPH AT +	PIC-C	.24	1	FLOW TIME	280.	274. 3.83	265. 3.83	256. 3.83	252. 3.83	250. 3.83	248. 3.83	245. 3.83	129. 3.83
2 COMBINED AT +	CPIC-C	.91	1	FLOW TIME	1041. 3.92	1020. 3.92	985. 3.92	951. 3.92	937. 3.92	927. 3.92	920. 3.92	909. 3.92	462. 3.92
ROUTED TO +	RCPIC-C	.91	1	FLOW TIME	1030. 3.92	1009.	975. 3.92	940. 3.92	922. 3.92	915. 3.92	908. 3.92	896. 3.92	461. 4.00
HYDROGRAPH AT	PIC-A	.36	1	FLOW TIME	356. 3.92	349. 3.92	338. 3.92	326. 3.92	322. 3.92	318. 3.92	316. 3.92	312. 3.92	165. 3.92
2 COMBINED AT +	CPIC-A	1.27	1	FLOW TIME	1386. 3.92	1359. 3.92	1313. 3.92	1266. 3.92	1243. 3.92	1233. 3.92	1224. 3.92	1208. 3.92	625. 4.00
2 COMBINED AT +	CCPIC-A	1.73	1	FLOW TIME	1997. 3.92	1959. 3.92	1895. 3.92	1830. 3.92	1800. 3.92	1785. 3.92	1772. 3.92	1750. 3.92	900. 4.00
HYDROGRAPH AT	ON18	.03	1	FLOW TIME	31. 3.67	30. 3.67	29. 3.67	27. 3.67	27. 3.67	26. 3.67	26. 3.67	26. 3.67	10. 3.67
2 COMBINED AT +	CON18	1.76	1	FLOW TIME	2015. 3.92	1977. 3.92	1912. 3.92	1846. 3.92	1816. 3.92	1801. 3.92	1788. 3.92	1765. 3.92	906. 4.00
HYDROGRAPH AT +	57B-1A	.04	1	FLOW TIME	54. 3.58	53. 3.58	51. 3.58	48. 3.58	48. 3.58	47. 3.58	47. 3.58	46. 3.58	20. 3.58
HYDROGRAPH AT +	57B-1B	.03	1	FLOW TIME	51. 3.58	50. 3.58	49. 3.58	47. 3.58	47. 3.58	46. 3.58	46. 3.58	45. 3.58	25. 3.58
HYDROGRAPH AT +	ON19	.01	1	FLOW TIME	12. 3.50	12. 3.50	12. 3.50	11. 3.50	11. 3.50	11. 3.50	11. 3.50	10. 3.50	4. 3.50
4 COMBINED AT	CON19	1.85	1	FLOW TIME	2059. 3.92	2020. 3.92	1954. 3.92	1886. 3.92	1856. 3.92	1840. 3.92	1826. 3.92	1804. 3.92	923. 3.92
ROUTED TO +	RCON19	1.85	1	FLOW TIME	2045. 3.92	2006. 3.92	1941. 3.92	1871. 3.92	1840. 3.92	1824. 3.92	1811. 3.92	1788. 3.92	922. 4.00
HYDROGRAPH AT +	57B-1C	.00	1	FLOW TIME	3.50	2. 3.50	2. 3.50	2. 3.50	2. 3.50	2. 3.50	2. 3.50	2. 3.50	1. 3.50
HYDROGRAPH AT +	on20	.01	1	FLOW TIME	12. 3.58	12. 3.58	11. 3.58	11. 3.58	10. 3.58	10. 3.58	10. 3.58	10. 3.58	4. 3.58
3 COMBINED AT +	CON20	1.86	1	FLOW TIME	2048. 3.92	2009. 3.92	1944. 3.92	1874. 3.92	1843. 3.92	1827. 3.92	1814. 3.92	1791. 3.92	923. 4.00
ROUTED TO +	RCON20	1.86	1	FLOW TIME	2040. 3.92	2001. 3.92	1935. 3.92	1865. 3.92	1834. 3.92	1818. 3.92	1805. 3.92	1781. 3.92	920. 4.00
HYDROGRAPH AT +	57B-4B	.01	1	FLOW TIME	24. 3.50	24. 3.50	23. 3.50	22. 3.50	22. 3.50	22. 3.50	22. 3.50	22. 3.50	13. 3.50
HYDROGRAPH AT +	57B-4C	.01	1	FLOW TIME	23. 3.50	22. 3.50	22. 3.50	21. 3.50	21. 3.50	21. 3.50	21. 3.50	20. 3.50	12. 3.58
2 COMBINED AT +	C57B-4C	.02	1	FLOW TIME	47. 3.50	46. 3.50	45. 3.50	43. 3.50	43. 3.50	43. 3.50	42. 3.50	42. 3.50	25. 3.50
HYDROGRAPH AT	on22	.01	1	FLOW TIME	18. 3.50	17. 3.50	16. 3.50	16. 3.50	15. 3.50	15. 3.50	15. 3.50	15. 3.50	6. 3.50
4 COMBINED AT	CON22	4.58	1	FLOW TIME	4729. 3.92	4636. 3.92	4481. 3.92	4318. 3.92	4251. 3.92	4209. 3.92	4177. 3.92	4125. 3.92	2065. 3.92
HYDROGRAPH AT	57B-1	.05	1	FLOW TIME	80. 3.58	79. 3.58	76. 3.58	74. 3.58	73. 3.58	72. 3.58	72. 3.58	71. 3.58	40. 3.58
HYDROGRAPH AT	57B-3	.05	1	FLOW	63.	62. Page 1	60.	58.	57.	56.	56.	55.	28.

				TIME	3.67	EXISTING. 3.67	OUT 3.67	3.67	3.67	3.67	3.67	3.67	3.67
HYDROGRAPH +	AT :	57в-4	.13	1 FLOW TIME	202. 3.58		192. 3.58	186. 3.58	184. 3.58	182. 3.58	181. 3.58	179. 3.58	101. 3.58
2 COMBINE +		57B-4	.18	1 FLOW	259. 3.58		246. 3.67	238. 3.67	235. 3.67	233. 3.67	232. 3.67	229. 3.67	127. 3.67
HYDROGRAPH +		PIC-B	.44	1 FLOW	442.	433.	419.	405.	399.	395.	392.	388.	205.
ROUTED TO	RI	PIC-B	.44	TIME	3.92	431.	3.92 416.	3.92 402.	3.92 396.	3.92 392.	3.92	3.92	3.92
4 COMBINE		57в-4	5.25	TIME	5339.	3.92 5234.	3.92 5060.	3.92 4878.	3.92 4803.	3.92 4756.	3.92 4720.	3.92 4662.	3.92 2354.
1		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	3.23	TIME SUMMA	3.92 RY OF KINEMA	3.92 TIC WAVE -	3.92 MUSKINGUM	3.92 -CUNGE ROU	3.92	3.92	3.92	3.92	3.92
	ISTAQ	ELEMENT	DT	PEAK	FLOW IS DIRE	VOLUME			LATED TO N INTERVA TIME TO		ME		
	13 IAQ	ELLINIT	(MIN)		PEAK	(IN)	(MIN)	(CFS)	PEAK (MIN)	(IN			
į	FOR PLAN RCON1	= 1 RATIO		and the state of		1.50	5.00	85.62	225.00	1.			
CONTINUITY	SUMMARY	(AC-FT) -	INFLOW=	.5242E+01	EXCESS= .000	00E+00 OUTFL	_OW= .5262	E+01 BASIN	STORAGE=	.6505E-0	2 PERCENT	Γ ERROR=	5
		= 1 RATIO)= .00 5.00	83.65	225.00	1.47	5.00	83.65	225.00	1.	47		
CONTINUITY	SUMMARY	(AC-FT) -	INFLOW=	.5111E+01	EXCESS= .000	00E+00 OUTFL	_OW= .5131	E+01 BASIN	STORAGE=	.6457E-0	2 PERCENT	F ERROR=	5
	FOR PLAN RCON1	= 1 RATIO)= .00 5.00	80.35	225.00	1.40	5.00	80.35	225.00	1.	40		
CONTINUITY	SUMMARY	(AC-FT) -	INFLOW=	.4894E+01	EXCESS= .000	00E+00 OUTFL	_OW= .4914	E+01 BASIN	STORAGE=	.6374E-0	2 PERCENT	ERROR=	5
	FOR PLAN RCON1	= 1 RATIO)= .00 5.00	77.02	225.00	1.34	5.00	77.02	225.00	1.	34		
CONTINUITY	SUMMARY	(AC-FT) -	INFLOW=	.4680E+01	EXCESS= .000	00E+00 OUTFL	_OW= .4699	E+01 BASIN	STORAGE=	.6290E-0	2 PERCENT	FERROR=	5
1	FOR PLAN RCON1	= 1 RATIO)= .00 5.00	75.69	225.00	1.32	5.00	75.69	225.00	1.	32		
CONTINUITY	SUMMARY	(AC-FT) -	INFLOW=	.4594E+01	EXCESS= .000	0E+00 OUTFL	_OW= .4613	E+01 BASIN	STORAGE=	.6256E-0	2 PERCENT	ERROR=	5
Į.	FOR PLAN RCON1	= 1 RATIO)= .00 5.00	74.75	225.00	1.30	5.00	74.75	225.00	1.	30		
CONTINUITY	SUMMARY	(AC-FT) -	INFLOW=	.4535E+01	EXCESS= .000	0E+00 OUTFL	_OW= .4553	E+01 BASIN	STORAGE=	.6232E-0	2 PERCENT	ERROR=	5
Ì		= 1 RATIO)= .00 5.00	74.08	225.00	1.29	5.00	74.08	225.00	1.	29		
CONTINUITY	SUMMARY	(AC-FT) -	INFLOW=	.4492E+01	EXCESS= .000	0E+00 OUTFL	_OW= .4511	E+01 BASIN	STORAGE=	.6038E-0	2 PERCENT	ERROR=	5
I		= 1 RATIO)= .00 5.00	73.00	225.00	1.27	5.00	73.00	225.00	1.	27		
CONTINUITY	SUMMARY	(AC-FT) -	INFLOW=	.4425E+01	EXCESS= .000	0E+00 OUTFL	_OW= .4442	E+01 BASIN	STORAGE=	.6011E-0	2 PERCENT	ERROR=	5
J		= 1 RATIO)= .00 4.00	31.17	228.00	.55	5.00	30.06	230.00	J	54		
CONTINUITY	SUMMARY	(AC-FT) -	INFLOW=	.1896E+01	EXCESS= .000	0E+00 OUTFL	.OW= .1909	E+01 BASIN	STORAGE=	.5556E-0	2 PERCENT	ERROR=	-1.0
	FOR PLAN RCCON6	= 1 RATIO	= .00 4.25	34.85	216.75	1.61	5.00	33.88	220.00	1.	61		
CONTINUITY	SUMMARY	(AC-FT) -	INFLOW=	.2157E+01	EXCESS= .000	0E+00 OUTFL	_OW= .2162	E+01 BASIN	STORAGE=	.2734E-0	2 PERCENT	ERROR=	3
1	FOR PLAN RCCON6	= 1 RATIO)= .00 4.25	34.03	216.75	1.58	5.00	33.16	220.00	1.	57		
CONTINUITY	SUMMARY	(AC-FT) -	INFLOW=	.2106E+01	EXCESS= .000	0E+00 OUTFL	.OW= .2111	E+01 BASIN	STORAGE=	.2708E-0	2 PERCENT	ERROR=	3
į	FOR PLAN RCCON6	= 1 RATIO)= .00 4.25	32.67	216.75	1.51	5.00	31.96	220.00	1.	51		

```
EXISTING.OUT
CONTINUITY SUMMARY (AC-FT) - INFLOW= .2022E+01 EXCESS= .0000E+00 OUTFLOW= .2026E+01 BASIN STORAGE= .2664E-02 PERCENT ERROR= -.3
          FOR PLAN = 1 RATIO= .00
RCCON6 MANE 4.25
                                                                                 30.75 220.00
                                                                        5.00
                                                           1.45
                                       31.31 216.75
CONTINUITY SUMMARY (AC-FT) - INFLOW= .1938E+01 EXCESS= .0000E+00 OUTFLOW= .1942E+01 BASIN STORAGE= .2619E-02 PERCENT ERROR= -.4
          FOR PLAN = 1 RATIO= .00
RCCON6 MANE 4.25
                                                                                  30.27 220.00
                                                           1.43
                                                                         5.00
                                          30.77 216.75
CONTINUITY SUMMARY (AC-FT) - INFLOW= .1905E+01 EXCESS= .0000E+00 OUTFLOW= .1909E+01 BASIN STORAGE= .2601E-02 PERCENT ERROR= -.4
          FOR PLAN = 1 RATIO= .00
RCCON6 MANE 4.25
                                                                                  29.93 220.00
                                                                         5.00
                                          30.39 216.75
                                                               1.41
 CONTINUITY SUMMARY (AC-FT) - INFLOW= .1881E+01 EXCESS= .0000E+00 OUTFLOW= .1886E+01 BASIN STORAGE= .2588E-02 PERCENT ERROR= -.4
           FOR PLAN = 1 RATIO= .00
RCCON6 MANE 4.25
                                                                                 29.69 220.00
                                                               1.40
                                                                         5.00
                                          30.11 216.75
 CONTINUITY SUMMARY (AC-FT) - INFLOW= .1865E+01 EXCESS= .0000E+00 OUTFLOW= .1869E+01 BASIN STORAGE= .2579E-02 PERCENT ERROR= -.4
           FOR PLAN = 1 RATIO= .00
RCCON6 MANE 4.25
                                                                                          220.00
                                                                          5.00
                                                                                   29.30
                                                                1.38
                                           29.68 216.75
 CONTINUITY SUMMARY (AC-FT) - INFLOW= .1838E+01 EXCESS= .0000E+00 OUTFLOW= .1842E+01 BASIN STORAGE= .2564E-02 PERCENT ERROR=
           FOR PLAN = 1 RATIO= .00
RCCON6 MANE 3.75
                                                                                            220.00
                                                                                   14.02
                                                                           5.00
                                                                 .63
                                           14.36 221.25
  CONTINUITY SUMMARY (AC-FT) - INFLOW= .8405E+00 EXCESS= .0000E+00 OUTFLOW= .8424E+00 BASIN STORAGE= .2039E-02 PERCENT ERROR= -.5
            FOR PLAN = 1 RATIO= .00
RSW11 MANE 1.02
                                                                                           225.00
                                                                                 753.82
                                                                          5.00
                                           755.16 226.24
                                                                2.08
  CONTINUITY SUMMARY (AC-FT) - INFLOW= .6522E+02 EXCESS= .0000E+00 OUTFLOW= .6522E+02 BASIN STORAGE= .1654E-02 PERCENT ERROR=
                                                                                                                                 .0
            FOR PLAN = 1 RATIO= .00
RSW11 MANE 1.03
                                                                           5.00 738.42 225.00
                                                                 2.03
                                                   226.07
                                         740.95
  CONTINUITY SUMMARY (AC-FT) - INFLOW= .6380E+02 EXCESS= .0000E+00 OUTFLOW= .6381E+02 BASIN STORAGE= .1696E-02 PERCENT ERROR=
                                                                                                                                  .0
             FOR PLAN = 1 RATIO= .00
RSW11 MANE 1.05 714.15 226.19
                                                                         5.00 712.14 225.00
                                                                 1.96
  CONTINUITY SUMMARY (AC-FT) - INFLOW= .6145E+02 EXCESS= .0000E+00 OUTFLOW= .6145E+02 BASIN STORAGE= .1622E-02 PERCENT ERROR=
                                                                                                                                  .0
                                                                           5.00 685.95 225.00
             FOR PLAN = 1 RATIO= .00
RSW11 MANE 1.06 686.99 226.38
                                                                  1.88
   CONTINUITY SUMMARY (AC-FT) - INFLOW= .5911E+02 EXCESS= .0000E+00 OUTFLOW= .5911E+02 BASIN STORAGE= .1763E-02 PERCENT ERROR=
                                                                                                                                  .0
                                                                           5.00 675.73 225.00
             FOR PLAN = 1 RATIO= .00
RSW11 MANE 1.07
                                                                  1.85
                                          677.33 225.62
   CONTINUITY SUMMARY (AC-FT) - INFLOW= .5818E+02 EXCESS= .0000E+00 OUTFLOW= .5818E+02 BASIN STORAGE= .1832E-02 PERCENT ERROR=
                                                                                                                                   .0
                                                                          5.00 668.38 225.00
             FOR PLAN = 1 RATIO= .00
RSW11 MANE 1.07
                                          669.72 225.52
                                                                  1.83
   CONTINUITY SUMMARY (AC-FT) - INFLOW= .5752E+02 EXCESS= .0000E+00 OUTFLOW= .5752E+02 BASIN STORAGE= .1613E-02 PERCENT ERROR=
                                                                                                                                   .0
                                                                         5.00 663.31 225.00
              FOR PLAN = 1 RATIO= .00 RSW11 MANE 1.08
                                          665.29 226.22
                                                                  1.82
    CONTINUITY SUMMARY (AC-FT) - INFLOW= .5706E+02 EXCESS= .0000E+00 OUTFLOW= .5706E+02 BASIN STORAGE= .1791E-02 PERCENT ERROR=
                                                                                                                                   .0
                                                                            5.00 654.91
                                                                                               225.00
              FOR PLAN = 1 RATIO= .00
RSW11 MANE 1.08
                                                                   1.79
                                                       226.27
                                             656.69
    CONTINUITY SUMMARY (AC-FT) - INFLOW= .5631E+02 EXCESS= .0000E+00 OUTFLOW= .5632E+02 BASIN STORAGE= .1761E-02 PERCENT ERROR=
              FOR PLAN = 1 RATIO= .00
RSW11 MANE 1.43 328.10
                                                                             5.00 324.89
                                                                                               225.00
                                                                   .88
                                                     225.73
    CONTINUITY SUMMARY (AC-FT) - INFLOW= .2754E+02 EXCESS= .0000E+00 OUTFLOW= .2754E+02 BASIN STORAGE= .1787E-02 PERCENT ERROR=
               FOR PLAN = 1 RATIO= .00
RCSW17 MANE 1.65 1211.98 225.57
                                                                   2.06 5.00 1210.68 225.00
                                                                                                             2.06
```

```
EXISTING.OUT
CONTINUITY SUMMARY (AC-FT) - INFLOW= .1040E+03 EXCESS= .0000E+00 OUTFLOW= .1040E+03 BASIN STORAGE= .3928E-02 PERCENT ERROR= .0
         CONTINUITY SUMMARY (AC-FT) - INFLOW= .1018E+03 EXCESS= .0000E+00 OUTFLOW= .1018E+03 BASIN STORAGE= .3507E-02 PERCENT ERROR=
         FOR PLAN = 1 RATIO= .00
RCSW17 MANE 1.68 1144.91 225.68
                                                                   5.00 1143.40 225.00
                                                          1.94
CONTINUITY SUMMARY (AC-FT) - INFLOW= .9799E+02 EXCESS= .0000E+00 OUTFLOW= .9800E+02 BASIN STORAGE= .3522E-02 PERCENT ERROR=
         FOR PLAN = 1 RATIO= .00
RCSW17 MANE 1.71 1102.37 225.64
                                                                  5.00 1101.22 225.00
                                                           1.87
CONTINUITY SUMMARY (AC-FT) - INFLOW= .9424E+02 EXCESS= .0000E+00 OUTFLOW= .9424E+02 BASIN STORAGE= .3477E-02 PERCENT ERROR=
         FOR PLAN = 1 RATIO= .00
RCSW17 MANE 1.72 1087.77 227.00
                                                                  5.00 1083.30 225.00
                                                            1.84
CONTINUITY SUMMARY (AC-FT) - INFLOW= .9278E+02 EXCESS= .0000E+00 OUTFLOW= .9279E+02 BASIN STORAGE= .3927E-02 PERCENT ERROR=
                                                                                                                          .0
         FOR PLAN = 1 RATIO= .00
RCSW17 MANE 1.73 1077.08 226.26
                                                           1.82 5.00 1072.79 225.00
CONTINUITY SUMMARY (AC-FT) - INFLOW= .9172E+02 EXCESS= .0000E+00 OUTFLOW= .9173E+02 BASIN STORAGE= .3817E-02 PERCENT ERROR=
                                                                                                                          .0
         FOR PLAN = 1 RATIO= .00
RCSW17 MANE 1.73 1069.06 226.95
                                                           1.81
                                                                  5.00 1062.80 225.00
CONTINUITY SUMMARY (AC-FT) - INFLOW= .9100E+02 EXCESS= .0000E+00 OUTFLOW= .9101E+02 BASIN STORAGE= .3937E-02 PERCENT ERROR=
         FOR PLAN = 1 RATIO= .00
RCSW17 MANE 1.74 1055.75 226.36
                                                                   5.00 1050.97 225.00
                                                           1.78
CONTINUITY SUMMARY (AC-FT) - INFLOW= .8979E+02 EXCESS= .0000E+00 OUTFLOW= .8980E+02 BASIN STORAGE= .3511E-02 PERCENT ERROR=
         FOR PLAN = 1 RATIO= .00
RCSW17 MANE 2.30 524.06 227.64
                                                                   5.00 520.91 225.00
                                                             .87
CONTINUITY SUMMARY (AC-FT) - INFLOW= .4386E+02 EXCESS= .0000E+00 OUTFLOW= .4387E+02 BASIN STORAGE= .3897E-02 PERCENT ERROR=
         FOR PLAN = 1 RATIO= .00
RCON9 MANE 1.67 2325.51 231.44
                                                            2.07
                                                                   5.00 2306.80 235.00
CONTINUITY SUMMARY (AC-FT) - INFLOW= .2301E+03 EXCESS= .0000E+00 OUTFLOW= .2301E+03 BASIN STORAGE= .3123E-02 PERCENT ERROR=
                                                                                                                          .0
         FOR PLAN = 1 RATIO= .00
RCON9 MANE 1.68 2279.65 231.56
                                                            2.02
                                                                   5.00 2258.94 235.00
CONTINUITY SUMMARY (AC-FT) - INFLOW= .2252E+03 EXCESS= .0000E+00 OUTFLOW= .2252E+03 BASIN STORAGE= .2858E-02 PERCENT ERROR=
                                                                                                                          .0
          FOR PLAN = 1 RATIO= .00
RCON9 MANE 1.70 2197.90 232.94
                                                                   5.00 2181.01 235.00
                                                         1.95
CONTINUITY SUMMARY (AC-FT) - INFLOW= .2170E+03 EXCESS= .0000E+00 OUTFLOW= .2170E+03 BASIN STORAGE= .2984E-02 PERCENT ERROR=
                                                                                                                          . 0
          FOR PLAN = 1 RATIO= .00
RCON9 MANE 1.72 2118.94 232.70
                                                           1.87
                                                                   5.00 2102.63 235.00
CONTINUITY SUMMARY (AC-FT) - INFLOW= .2088E+03 EXCESS= .0000E+00 OUTFLOW= .2088E+03 BASIN STORAGE= .3195E-02 PERCENT ERROR=
                                                                                                                          .0
         FOR PLAN = 1 RATIO= .00
RCON9 MANE 1.73 2088.03 232.28
                                                            1.85
                                                                   5.00 2070.54 235.00
CONTINUITY SUMMARY (AC-FT) - INFLOW= .2056E+03 EXCESS= .0000E+00 OUTFLOW= .2056E+03 BASIN STORAGE= .2784E-02 PERCENT ERROR=
                                                                                                                          .0
         FOR PLAN = 1 RATIO= .00
RCON9 MANE 1.74 2062.77 233.22
                                                            1.83
                                                                   5.00 2047.86 235.00
CONTINUITY SUMMARY (AC-FT) - INFLOW= .2033E+03 EXCESS= .0000E+00 OUTFLOW= .2033E+03 BASIN STORAGE= .2736E-02 PERCENT ERROR=
                                                                                                                          .0
         FOR PLAN = 1 RATIO= .00
RCON9 MANE 1.75 2050.03 232.14
                                                            1.81
                                                                   5.00 2032.41 235.00
CONTINUITY SUMMARY (AC-FT) - INFLOW= .2017E+03 EXCESS= .0000E+00 OUTFLOW= .2017E+03 BASIN STORAGE= .2832E-02 PERCENT ERROR=
         FOR PLAN = 1 RATIO= .00
RCON9 MANE 1.75 2021.32 233.22
                                                                     5.00 2006.95 235.00 1.79
                                                            1.79
```

```
EXISTING.OUT

CONTINUITY SUMMARY (AC-FT) - INFLOW= .1991E+03 EXCESS= .0000E+00 OUTFLOW= .1991E+03 BASIN STORAGE= .2680E-02 PERCENT ERROR= .0
                                                                          5.00 1012.06 235.00
          FOR PLAN = 1 RATIO= .00
RCON9 MANE 2.26 1012.15
                                                               .89
                                                 235.03
CONTINUITY SUMMARY (AC-FT) - INFLOW= .9869E+02 EXCESS= .0000E+00 OUTFLOW= .9869E+02 BASIN STORAGE= .3005E-02 PERCENT ERROR=
          FOR PLAN = 1 RATIO= .00
RCCON10 MANE 1.23 2331.18
                                                                          5.00 2330.90 235.00
                                                 234.30
                                                               2.05
CONTINUITY SUMMARY (AC-FT) - INFLOW= .2358E+03 EXCESS= .0000E+00 OUTFLOW= .2358E+03 BASIN STORAGE= .1329E-02 PERCENT ERROR=
                                                                                                                                 .0
          FOR PLAN = 1 RATIO= .00
RCCON10 MANE 1.24 2284.11
                                                                          5.00 2283.17 235.00
                                                                2.00
                                                 234.71
CONTINUITY SUMMARY (AC-FT) - INFLOW= .2307E+03 EXCESS= .0000E+00 OUTFLOW= .2307E+03 BASIN STORAGE= .1356E-02 PERCENT ERROR=
                                                                                                                                 .0
          FOR PLAN = 1 RATIO= .00
RCCON10 MANE 1.26 2205.80
                                                                          5.00 2205.72 235.00
                                                                1.93
                                                    234.98
CONTINUITY SUMMARY (AC-FT) - INFLOW= .2223E+03 EXCESS= .0000E+00 OUTFLOW= .2223E+03 BASIN STORAGE= .1456E-02 PERCENT ERROR=
                                                                                                                                  .0
           FOR PLAN = 1 RATIO= .00
RCCON10 MANE 1.27 2124.92
                                                                          5.00 2124.05
                                                                1.86
                                                    235.34
CONTINUITY SUMMARY (AC-FT) - INFLOW= .2139E+03 EXCESS= .0000E+00 OUTFLOW= .2139E+03 BASIN STORAGE= .1320E-02 PERCENT ERROR=
                                                                                                                                  .0
           FOR PLAN = 1 RATIO= .00
RCCON10 MANE 1.28 2092.66
                                                                           5.00 2091.76 235.00
                                                                1.83
                                                    235.28
 CONTINUITY SUMMARY (AC-FT) - INFLOW= .2106E+03 EXCESS= .0000E+00 OUTFLOW= .2106E+03 BASIN STORAGE= .1358E-02 PERCENT ERROR=
                                                                                                                                  .0
           FOR PLAN = 1 RATIO= .00
RCCON10 MANE 1.28 2069.86
                                                                           5.00 2069.49 235.00
                                                                 1.81
                                                  234.86
 CONTINUITY SUMMARY (AC-FT) - INFLOW= .2082E+03 EXCESS= .0000E+00 OUTFLOW= .2082E+03 BASIN STORAGE= .1289E-02 PERCENT ERROR=
                                                                                                                                  . 0
           FOR PLAN = 1 RATIO= .00
RCCON10 MANE 1.29 2053.30 235.46
                                                                          5.00 2052.26 235.00
                                                                 1.79
 CONTINUITY SUMMARY (AC-FT) - INFLOW= .2065E+03 EXCESS= .0000E+00 OUTFLOW= .2065E+03 BASIN STORAGE= .1544E-02 PERCENT ERROR=
                                                                                                                                  .0
           FOR PLAN = 1 RATIO= .00
RCCON1O MANE 1.29 2028.73 235.17
                                                                         5.00 2028.03
                                                                                           235.00
                                                                 1.77
 CONTINUITY SUMMARY (AC-FT) - INFLOW= .2039E+03 EXCESS= .0000E+00 OUTFLOW= .2039E+03 BASIN STORAGE= .1398E-02 PERCENT ERROR=
                                                                                                                                   .0
           FOR PLAN = 1 RATIO= .00
RCCON10 MANE 1.63 1018.69
                                                                           5.00 1014.91
                                                                                           235.00
                                                                  .87
                                                    237.34
 CONTINUITY SUMMARY (AC-FT) - INFLOW= .1007E+03 EXCESS= .0000E+00 OUTFLOW= .1007E+03 BASIN STORAGE= .1586E-02 PERCENT ERROR=
                                                                                                                                   .0
            FOR PLAN = 1 RATIO= .00
RCON14 MANE 4.25
                                                                           5.00 166.33
                                                                                              220.00
                                                                 1.99
                                         167.38
                                                    221.00
 CONTINUITY SUMMARY (AC-FT) - INFLOW= .1179E+02 EXCESS= .0000E+00 OUTFLOW= .1181E+02 BASIN STORAGE= .2635E-02 PERCENT ERROR=
            FOR PLAN = 1 RATIO= .00
RCON14 MANE 4.25
                                                                            5.00
                                                                                              220.00
                                                                                  163.07
                                                                 1.95
                                          164.16
                                                    221.00
  CONTINUITY SUMMARY (AC-FT) - INFLOW= .1155E+02 EXCESS= .0000E+00 OUTFLOW= .1156E+02 BASIN STORAGE= .2609E-02 PERCENT ERROR=
            FOR PLAN = 1 RATIO= .00
RCON14 MANE 4.25
                                                                                            220.00
                                                                            5.00
                                                                                  157.63
                                                                  1.88
                                         158.77
                                                    221.00
  CONTINUITY SUMMARY (AC-FT) - INFLOW= .1114E+02 EXCESS= .0000E+00 OUTFLOW= .1115E+02 BASIN STORAGE= .2565E-02 PERCENT ERROR= -.1
            FOR PLAN = 1 RATIO= .00
RCON14 MANE 4.00
                                                                                            220.00
                                                                            5.00
                                                                                  155.50
                                         155.50
                                                    220.00
                                                                  1.81
  CONTINUITY SUMMARY (AC-FT) - INFLOW= .1074E+02 EXCESS= .0000E+00 OUTFLOW= .1075E+02 BASIN STORAGE= .2457E-02 PERCENT ERROR= -.1
             FOR PLAN = 1 RATIO= .00
RCON14 MANE 4.00
                                                                            5.00 153.27 220.00
                                                                  1.78
                                         153.27
                                                    220.00
  CONTINUITY SUMMARY (AC-FT) - INFLOW= .1057E+02 EXCESS= .0000E+00 OUTFLOW= .1059E+02 BASIN STORAGE= .2440E-02 PERCENT ERROR= -.1
             FOR PLAN = 1 RATIO= .00
RCON14 MANE 4.00 151.72 220.00
                                                                            5.00 151.72 220.00
                                                                                                          1.77
                                                                  1.77
```

EXISTING.OUT CONTINUITY SUMMARY (AC-FT) - INFLOW= .1046e+02 EXCESS= .0000e+00 OUTFLOW= .1047e+02 BASIN STORAGE= .2427e-02 PERCENT ERROR=	1
FOR PLAN = 1 RATIO= .00 RCON14 MANE 4.00 150.60 220.00 1.75 5.00 150.60 220.00 1.75	
CONTINUITY SUMMARY (AC-FT) - INFLOW= .1038E+02 EXCESS= .0000E+00 OUTFLOW= .1039E+02 BASIN STORAGE= .2418E-02 PERCENT ERROR=	1
FOR PLAN = 1 RATIO= .00 RCON14 MANE 4.25 146.92 221.00 1.73 5.00 145.67 220.00 1.73	
RCON14 MANE 4.25 146.92 221.00 1.73 5.00 145.67 220.00 1.73 CONTINUITY SUMMARY (AC-FT) - INFLOW= .1024E+02 EXCESS= .0000E+00 OUTFLOW= .1025E+02 BASIN STORAGE= .2466E-02 PERCENT ERROR=	1
FOR PLAN = 1 RATIO= .00	
RCON14 MANE 5.00 78.65 220.00 .88 5.00 78.65 220.00 .88	·2
CONTINUITY SUMMARY (AC-FT) - INFLOW= .5186E+01 EXCESS= .0000E+00 OUTFLOW= .5194E+01 BASIN STORAGE= .2404E-02 PERCENT ERROR= FOR PLAN = 1 RATIO= .00	-,2
RCON16 MANE 1.69 366.03 216.69 1.76 5.00 353.70 215.00 1.76	
CONTINUITY SUMMARY (AC-FT) - INFLOW= .2617e+02 EXCESS= .0000E+00 OUTFLOW= .2617e+02 BASIN STORAGE= .1013E-02 PERCENT ERROR=	.0
FOR PLAN = 1 RATIO= .00 RCON16 MANE	
CONTINUITY SUMMARY (AC-FT) - INFLOW= .2558E+02 EXCESS= .0000E+00 OUTFLOW= .2558E+02 BASIN STORAGE= .1022E-02 PERCENT ERROR=	.0
FOR PLAN = 1 RATIO= .00 RCON16 MANE 1.73 339.51 217.68 1.65 5.00 333.18 215.00 1.65	
CONTINUITY SUMMARY (AC-FT) - INFLOW= .2459E+02 EXCESS= .0000E+00 OUTFLOW= .2460E+02 BASIN STORAGE= .9731E-03 PERCENT ERROR=	.0
FOR PLAN = 1 RATIO= .00 RCON16 MANE 1.75 331.60 216.91 1.59 5.00 319.76 215.00 1.59	
CONTINUITY SUMMARY (AC-FT) - INFLOW= .2367E+02 EXCESS= .0000E+00 OUTFLOW= .2367E+02 BASIN STORAGE= .1040E-02 PERCENT ERROR	.0
FOR PLAN = 1 RATIO= .00 RCON16 MANE 1.76 323.47 216.34 1.56 5.00 315.26 215.00 1.56	
CONTINUITY SUMMARY (AC-FT) - INFLOW= .2327E+02 EXCESS= .0000E+00 OUTFLOW= .2327E+02 BASIN STORAGE= .9851E-03 PERCENT ERROR-	.0
FOR PLAN = 1 RATIO= .00 RCON16 MANE 1.77 321.71 217.18 1.55 5.00 310.86 215.00 1.55	
CONTINUITY SUMMARY (AC-FT) - INFLOW= .2301E+02 EXCESS= .0000E+00 OUTFLOW= .2301E+02 BASIN STORAGE= .9887E-03 PERCENT ERROR-	.0
FOR PLAN = 1 RATIO= .00 RCON16 MANE 1.77 316.30 217.78 1.53 5.00 308.90 215.00 1.53	
CONTINUITY SUMMARY (AC-FT) - INFLOW= .2281E+02 EXCESS= .0000E+00 OUTFLOW= .2281E+02 BASIN STORAGE= .1032E-02 PERCENT ERROR-	.0
FOR PLAN = 1 RATIO= .00	
RCON16 MANE 1.78 314.00 217.16 1.51 5.00 303.28 215.00 1.51 CONTINUITY SUMMARY (AC-FT) - INFLOW= .2248E+02 EXCESS= .0000E+00 OUTFLOW= .2249E+02 BASIN STORAGE= .1041E-02 PERCENT ERROR=	· .0
FOR PLAN = 1 RATIO= .00	
RCON16 MANE 2.29 150.40 219.44 .72 5.00 148.93 220.00 .72	.0
CONTINUITY SUMMARY (AC-FT) - INFLOW= .1076E+02 EXCESS= .0000E+00 OUTFLOW= .1076E+02 BASIN STORAGE= .1017E-02 PERCENT ERROR- FOR PLAN = 1 RATIO= .00	0
RCON17 MANE 2.23 364.75 218.67 1.74 5.00 356.45 220.00 1.74	
CONTINUITY SUMMARY (AC-FT) - INFLOW= .2715E+02 EXCESS= .0000E+00 OUTFLOW= .2716E+02 BASIN STORAGE= .1496E-02 PERCENT ERROR=	.0
FOR PLAN = 1 RATIO= .00 RCON17 MANE 2.25 357.02 218.14 1.70 5.00 349.64 220.00 1.70	
CONTINUITY SUMMARY (AC-FT) - INFLOW= .2653E+02 EXCESS= .0000E+00 OUTFLOW= .2653E+02 BASIN STORAGE= .1654E-02 PERCENT ERROR-	.0
FOR PLAN = 1 RATIO= .00 RCON17 MANE 2.28 344.14 218.77 1.63 5.00 337.46 220.00 1.63	
CONTINUITY SUMMARY (AC-FT) - INFLOW= .2553E+02 EXCESS= .0000E+00 OUTFLOW= .2553E+02 BASIN STORAGE= .1878E-02 PERCENT ERROR-	.0
FOR PLAN = 1 RATIO= .00 RCON17 MANE 2.31 330.60 219.64 1.57 5.00 328.28 220.00 1.57	

CONTINUITY SUMMARY (AC-FT) - INFLOW= .2455E+C	E: 02 EXCESS= .0000E+	XISTING.OUT -00 OUTFLOW= .2	455E+02 BASIN	STORAGE= .	1844E-02 PERCENT ERROR=	.0
FOR PLAN = 1 RATIO= .00		1.54 5.0		220.00	1.54	
RCON17 MANE 2.32 320 CONTINUITY SUMMARY (AC-FT) - INFLOW= .2412E+		+OO OUTFLOW= .2	2413E+02 BASIN	STORAGE= .	1875E-02 PERCENT ERROR=	.0
FOR PLAN = 1 RATIO= .00		1.53 5.0		220.00	1.53	
RCON17 MANE 2.34 322 CONTINUITY SUMMARY (AC-FT) - INFLOW= .2387E+				STORAGE= .	1904E-02 PERCENT ERROR=	.0
	02 EXCESS= 10000=				1.52	
RCONT/ MARE	.55 217.66	1.51 5.		220.00		.0
CONTINUITY SUMMARY (AC-FT) - INFLOW= .2367E+	.0000E	+00 OUTFLOW= .	236/E+U2 BASIN	STORAGE -	.10032 02 . =	
RCONI/ MANE	1.02 219.05	75 N 15	00 309.48	220.00	1.49	0
CONTINUITY SUMMARY (AC-FT) - INFLOW= .2331E-	+02 EXCESS= .0000E	E+00 OUTFLOW= .	2331E+02 BASIN	STORAGE=	.1692E-02 PERCENT ERROK=	.0
RCONT/ MANE	2.09 221.83		.00 149.27	220.00	.71	
CONTINUITY SUMMARY (AC-FT) - INFLOW= .1110E	+02 EXCESS= .0000	E+00 OUTFLOW= .	.1110E+02 BASIN	STORAGE=	.1950E-02 PERCENT ERROR=	.0
FOR PLAN = 1 RATIO= .00 RC13B-1 MANE 5.00 35	3.60 225.00	2.27 5	.00 353.60	225.00	2.27	
CONTINUITY SUMMARY (AC-FT) - INFLOW= .3020E	+02 EXCESS= .0000	E+00 OUTFLOW=	.3021E+02 BASIN	N STORAGE=	.1566E-02 PERCENT ERROR=	1
FOR PLAN = 1 RATIO= .00	6.83 225.00		.00 346.83	225.00	2.23	
RC13B-1 MANE 5.00 34 CONTINUITY SUMMARY (AC-FT) - INFLOW= .29608			.2961E+02 BASI	N STORAGE=	.1548E-02 PERCENT ERROR=	1
FOR PLAN = 1 RATIO= .00				225.00	2.15	
RC13B-1 MANE 5.00 33	35.54 225.00		W. S		.1518E-02 PERCENT ERROR=	1
CONTINUITY SUMMARY (AC-FT) - INFLOW= .2860	E+02 EXCESS= .0000	JE+00 OUTFLOW=	.20012402 5751			
KCT2P-T MAINT	24.25 225.00		324.25	225.00	2.08	1
CONTINUITY SUMMARY (AC-FT) - INFLOW= .2760	E+02 EXCESS= .000	OE+00 OUTFLOW=	.2762E+02 BASI	:N STORAGE=	: .1489E-02 PERCENT ERROR-	
KCT2B-T INVICE	19.73 225.00		5.00 319.73	225.00	2.05	
CONTINUITY SUMMARY (AC-FT) - INFLOW= .2721	E+02 EXCESS= .000	OE+00 OUTFLOW=	.2722E+02 BAS	IN STORAGE:	= .1476E-02 PERCENT ERROR=	1
FOR PLAN = 1 RATIO= .00 RC13B-1 MANE 5.00	316.57 225.00	2.03	5.00 316.57	225.00	2.03	
CONTINUITY SUMMARY (AC-FT) - INFLOW= .269	3E+02 EXCESS= .000	00E+00 OUTFLOW=	: .2694E+02 BAS	IN STORAGE	= .1468E-02 PERCENT ERROR=	1
FOR PLAN = 1 RATIO= .00	314.32 230.00	2.01	5.00 314.32	00	100 mag	
RC13B-1 MANE 5.00 CONTINUITY SUMMARY (AC-FT) - INFLOW= .267	, , , , , , , , , , , , , , , , , , , ,	OOE+00 OUTFLOW=	= .2675E+02 BAS	IN STORAGE	= .1462E-02 PERCENT ERROR=	1
500 DIANI - 1 PATTO= .00		1.99	5.00 310.89			
RC13B-1 MANE 5.00 CONTINUITY SUMMARY (AC-FT) - INFLOW= .264	310.89 230.00			SIN STORAGE	= .1452E-02 PERCENT ERROR=	1
	TE+02 EXCESS00	002100 0011 ===				
KCT2B-T MARE	171.06 230.00	1.05	5.00 171.00			1
CONTINUITY SUMMARY (AC-FT) - INFLOW= .139	01E+02 EXCESS= .00	00E+00 OUTFLOW	= .1392E+U2 BA	SIN SIURAGI		
FOR PLAN = 1 RATIO= .00 RC13B-2 MANE 5.00	640.80 230.00	2.18	5.00 640.8			-
CONTINUITY SUMMARY (AC-FT) - INFLOW= .53	92E+02 EXCESS= .00	000E+00 OUTFLOW	/= .5398E+02 BA	SIN STORAG	E= .5817E-02 PERCENT ERROR=	1
FOR PLAN = 1 RATIO= .00 RC13B-2 MANE 5.00	628.20 230.00	2.13	5.00 628.2	0 230.0	0 2.13	

CONTINUITY SUMMARY	(AC-FT) - INF	FLOW= .57	282E+02 EXC	CESS= .0000	EXISTING.OUT OE+00 OUTFLOW=	.5288E+	02 BASIN	STORAGE=	.5767E-02 PERCENT	ERROR=	1
FOR PLAN : RC13B-2		.00	607.17	230.00	2.06	5.00	607.17	230.00	2.06		
CONTINUITY SUMMARY						5105E+	02 BASIN	STORAGE=	.5683E-02 PERCENT	ERROR=	1
FOR PLAN	= 1 RATIO=	.00					586.10	230.00	1.99		
RC13B-2 CONTINUITY SUMMARY		5.00	586.10	230.00	1.99					ERROR=	1
	= 1 RATIO=	.00	310E+02 EX	.000	02400 00112011	1132321	02 2/10211				
RC13B-2	MANE	5.00	578.31	230.00	1.96		578.31	230.00	1.96	EDDOD-	1
CONTINUITY SUMMARY			845E+02 EX	CESS= .000	OE+OO OUTFLOW:	= .4850E+	OZ BASIN	STURAGE=	./165E-UZ PERCENT	ERROR=	1
RC13B-2		.00 5.00	572.39	230.00	1.94		572.39	230.00	1.94		
CONTINUITY SUMMARY	(AC-FT) - IN	FLOW= .4	794E+02 EX	CESS= .000	00E+00 OUTFLOW	= .4799E+	-02 BASIN	STORAGE=	.7136E-02 PERCENT	ERROR=	1
FOR PLAN RC13B-2	= 1 RATIO= MANE	.00 5.00	568.15	230.00	1.92	5.00	568.15	230.00	1.92		
CONTINUITY SUMMARY	(AC-FT) - IN	FLOW= .4	758E+02 EX	CESS= .000	00E+00 OUTFLOW	= .4763E+	-02 BASIN	STORAGE=	.7115E-02 PERCENT	ERROR=	1
FOR PLAN RC13B-2	= 1 RATIO= MANE	.00 5.00	561.38	230.00	1.90	5.00	561.38	230.00	1.90		
CONTINUITY SUMMARY	(AC-FT) - IN	FLOW= .4	700E+02 EX	CESS= .000	00E+00 OUTFLOW	= .4705E+	-02 BASIN	STORAGE=	.6748E-02 PERCENT	ERROR=	1
FOR PLAN RC13B-2	= 1 RATIO= MANE	.00 5.00	295.27	235.00	.98	5.00	295.27	235.00	.98		
CONTINUITY SUMMARY	(AC-FT) - IN	FLOW= .2	427E+02 EX	CESS= .000	00E+00 OUTFLOW	= .2430E+	+02 BASIN	STORAGE=	.7210E-02 PERCENT	ERROR=	1
	= 1 RATIO= MANE	.00	318.89	235.00	2.18	5.00	318.89	235.00	2.18		
CONTINUITY SUMMARY		FLOW= .2	936E+02 EX	CESS= .000	OOE+OO OUTFLOW	= .2938E+	+02 BASIN	STORAGE=	.2006E-02 PERCENT	ERROR=	1
	= 1 RATIO=	.00	312.72	235.00	2.13	5.00	312.72	235.00	2.13		
CONTINUITY SUMMARY	MANE (AC-FT) - IN								.1983E-02 PERCENT	ERROR=	1
	= 1 RATIO=	.00						235.00	2.06		
R19A CONTINUITY SUMMARY	MANE	5.00	302.45	235.00	2.06	5.00 - 2776F-	302.45			ERROR=	1
	= 1 RATIO=	.00	27746+02 6	(CE33= .00)	OUETOO GOTFLOW	2// 02	TOL BASIN				
R19A	MANE	5.00	292.17	235.00	1.98	5.00	292.17	235.00	1.98	- FRROR	1
CONTINUITY SUMMARY			2673E+02 E>	(CESS= .00	00E+00 OUTFLOV	⊫ .2675E-	+02 BASIN	STORAGE=	.1906E-02 PERCENT	EKROK=	1
R19A	= 1 RATIO= MANE	5.00	288.05	235.00	1.95	5.00	288.05	235.00	1.95		
CONTINUITY SUMMARY	(AC-FT) - IN	NFLOW= .	2633E+02 E>	(CESS= .00	00E+00 OUTFLOW	/= .2635E-	+02 BASIN	STORAGE=	.1891E-02 PERCENT	ERROR=	1
	= 1 RATIO= MANE	.00 5.00	285.17	235.00	1.93	5.00	285.17	235.00	1.93		
CONTINUITY SUMMARY	(AC-FT) - IN	NFLOW= .	2605E+02 E	CESS= .00	00E+00 OUTFLOW	v= .2606E	+02 BASIN	STORAGE=	.1880E-02 PERCENT	ERROR=	1
	= 1 RATIO= MANE	.00 5.00	283.11	235.00	1.92	5.00	283.11	235.00	1.92		
CONTINUITY SUMMARY	(AC-FT) - IN	NFLOW= .	2585E+02 EX	KCESS= .00	00E+00 OUTFLO	√= .2586E	+02 BASIN	STORAGE=	.1872E-02 PERCEN	Γ ERROR=	1
	= 1 RATIO= MANE	.00 5.00	279.82	235.00	1.89	5.00	279.82	235.00	1.89		
CONTINUITY SUMMARY	(AC-FT) - IN	NFLOW= .	2553E+02 E	XCESS= .00	000E+00 OUTFLO	N= .2554E	+02 BASIN	STORAGE=	.1860E-02 PERCEN	r error=	1
	= 1 RATIO= MANE	.00	146.43	235.00	.96	5.00	146.43	235.00	.96		

EXISTING.OUT CONTINUITY SUMMARY (AC-FT) - INFLOW= .1300E+02 EXCESS= .0000E+00 OUTFLOW= .1300E+02 BASIN STORAGE= .2023E-02 PERCENT ERROR=1	
FOR PLAN = 1 RATIO= $.00$ 2.18 5.00 780.51 235.00 2.18	
CONTINUITY SUMMARY (AC-FT) - INFLOW= .7731E+02 EXCESS= .0000E+00 OUTFLOW= .7736E+02 BASIN STORAGE= .8795E-02 PERCENT ERROR=1	
25 00 2 14	
RC13A-2 MANE 5.00 764.75 E55765	
CONTINUITY SUMMARY (AC-FT) - INFLOW= .7572E+02 EXCESS= .0000E+00 OUTFLOW= .7577E+02 BASIN STORAGE= .8721E-02 PERCENT ERROR=1	
FOR PLAN = 1 RATIO= .00	
CONTINUITY SUMMARY (AC-FT) - INFLOW= .7309E+02 EXCESS= .0000E+00 OUTFLOW= .7314E+02 BASIN STORAGE= .8303E-02 PERCENT ERROR=1	
FOR PLAN = 1 RATIO= .00 RC13A-2 MANE 5.00 712.20 235.00 1.99 5.00 712.20 235.00 1.99	
CONTINUITY SUMMARY (AC-FT) - INFLOW= .7047E+02 EXCESS= .0000E+00 OUTFLOW= .7051E+02 BASIN STORAGE= .8180E-02 PERCENT ERROR=1	
FOR PLAN = 1 RATIO= .00 RC13A-2 MANE 5.00 701.68 235.00 1.96 5.00 701.68 235.00 1.96	
CONTINUITY SUMMARY (AC-FT) - INFLOW= .6942E+02 EXCESS= .0000E+00 OUTFLOW= .6947E+02 BASIN STORAGE= .8130E-02 PERCENT ERROR=1	
FOR PLAN = 1 RATIO= .00	
RC13A-2 MANE 5.00 694.32 253.00 1757 CONTINUITY SUMMARY (AC-FT) - INFLOW= .6869E+02 EXCESS= .0000E+00 OUTFLOW= .6873E+02 BASIN STORAGE= .8095E-02 PERCENT ERROR=1	
FOR RIAN = 1 RATIO= .00 1.92	
RC13A-2 MANE 5.00 689.06 235.00 1.92 5.00 689.06 235.00 257.00 257.00 257.00 CONTINUITY SUMMARY (AC-FT) - INFLOW= .6817E+02 EXCESS= .0000E+00 OUTFLOW= .6821E+02 BASIN STORAGE= .7878E-02 PERCENT ERROR=1	
and the second s	
RC13A-2 MANE 5.00 680.64 235.00 1.90 3.00 000.07 255100	
CONTINUITY SUMMARY (AC-FT) - INFLOW= .6733E+02 EXCESS= .0000E+00 OUTFLOW= .6738E+02 BASIN STORAGE= .7838E-02 PERCENT ERROR=1	
FOR PLAN = 1 RATIO= .00 RC13A-2 MANE 5.00 353.55 240.00 .98 5.00 353.55 240.00 .98	
CONTINUITY SUMMARY (AC-FT) - INFLOW= .3459E+02 EXCESS= .0000E+00 OUTFLOW= .3462E+02 BASIN STORAGE= .6811E-02 PERCENT ERROR=1	1
FOR PLAN = 1 RATIO= .00 RCPIC-C MANE 2.90 1036.21 237.50 2.15 5.00 1029.58 235.00 2.15	
CONTINUITY SUMMARY (AC-FT) - INFLOW= .1041E+03 EXCESS= .0000E+00 OUTFLOW= .1041E+03 BASIN STORAGE= .2599E-02 PERCENT ERROR= .0000E+00 OUTFLOW= .1041E+00 OUTFLOW= .000E+00 OUT	i
FOR PLAN = 1 RATIO= .00 RCPIC-C MANE 2.92 1018.48 236.21 2.11 5.00 1009.34 235.00 2.11	
CONTINUITY SUMMARY (AC-FT) - INFLOW= .1020E+03 EXCESS= .0000E+00 OUTFLOW= .1020E+03 BASIN STORAGE= .2441E-02 PERCENT ERROR= .)
FOR PLAN = 1 RATIO= .00	
RCPIC-C MANE 2.33 330011	0
FOR DIAN = 1 RATIO= .00 1.96	
RCPIC-C MANE 2.99 947.33 23330	0
225 00 1 93	
RCPIC-C MANE 3.00 935.30 237.12 1.93 5.00 321.03	.0
CONTINUITY SUMMARY (AC-FT) - INFLOW= .9346E+02 EXCESS= .0000E+00 OUTFLOW= .9347E+02 BASIN STORAGE= .2840E-02 PERCENT ERROR=	
FOR PLAN = 1 RATIO= .00	.0
CONTINUITY SUMMARY (AC-FT) - INFLOW= .9247E+02 EXCESS= .0000E+00 OUTFLOW= .9248E+02 BASIN STORAGE= .2450E-02 PERCENT ERROR=	
FOR PLAN = 1 RATIO= .00 RCPIC-C MANE 3.02 912.75 235.55 1.90 5.00 907.94 235.00 1.89	

```
EXISTING.OUT
CONTINUITY SUMMARY (AC-FT) - INFLOW= .9176E+02 EXCESS= .0000E+00 OUTFLOW= .9177E+02 BASIN STORAGE= .2737E-02 PERCENT ERROR=
          FOR PLAN = 1 RATIO= .00
RCPIC-C MANE 3.03 906.65 236.52 1.87 5.00 895.54 235.00
CONTINUITY SUMMARY (AC-FT) - INFLOW= .9064E+02 EXCESS= .0000E+00 OUTFLOW= .9064E+02 BASIN STORAGE= .3045E-02 PERCENT ERROR=
          FOR PLAN = 1 RATIO= .00
RCPIC-C MANE 3.82 462.80 240.43
                                                                         5.00 461.30 240.00
                                                               .96
CONTINUITY SUMMARY (AC-FT) - INFLOW= .4647E+02 EXCESS= .0000E+00 OUTFLOW= .4648E+02 BASIN STORAGE= .2735E-02 PERCENT ERROR=
          FOR PLAN = 1 RATIO= .00
RCON19 MANE 1.80 2048.82 237.17
                                                                         5.00 2044.69 235.00
                                                               2.11
CONTINUITY SUMMARY (AC-FT) - INFLOW= .2079E+03 EXCESS= .0000E+00 OUTFLOW= .2079E+03 BASIN STORAGE= .3173E-02 PERCENT ERROR=
           FOR PLAN = 1 RATIO= .00
RCON19 MANE 1.81 2010.80
                                                                         5.00 2005.77 235.00
                                                  237.05
                                                                2.07
CONTINUITY SUMMARY (AC-FT) - INFLOW= .2036E+03 EXCESS= .0000E+00 OUTFLOW= .2036E+03 BASIN STORAGE= .3176E-02 PERCENT ERROR=
           FOR PLAN = 1 RATIO= .00
RCON19 MANE 1.83 1943.99
                                                                         5.00 1940.79 235.00
                                                 236.30
                                                                1.99
 CONTINUITY SUMMARY (AC-FT) - INFLOW= .1965E+03 EXCESS= .0000E+00 OUTFLOW= .1965E+03 BASIN STORAGE= .3190E-02 PERCENT ERROR=
                                                                                                                                 .0
           FOR PLAN = 1 RATIO= .00
RCON19 MANE 1.86 1873.16
                                                                          5.00 1871.11
                                                                1.92
                                                    237.49
 CONTINUITY SUMMARY (AC-FT) - INFLOW= .1894E+03 EXCESS= .0000E+00 OUTFLOW= .1894E+03 BASIN STORAGE= .3294E-02 PERCENT ERROR=
                                                                                                                                 .0
           FOR PLAN = 1 RATIO= .00
RCON19 MANE 1.87 1848.15
                                                                         5.00 1840.12 235.00
                                                                1.89
                                                   237.07
 CONTINUITY SUMMARY (AC-FT) - INFLOW= .1866E+03 EXCESS= .0000E+00 OUTFLOW= .1866E+03 BASIN STORAGE= .2772E-02 PERCENT ERROR=
                                                                                                                                 .0
           FOR PLAN = 1 RATIO= .00
RCON19 MANE 1.87 1825.71 235.94
                                                                         5.00 1823.96 235.00
                                                                1.87
 CONTINUITY SUMMARY (AC-FT) - INFLOW= .1846E+03 EXCESS= .0000E+00 OUTFLOW= .1846E+03 BASIN STORAGE= .2965E-02 PERCENT ERROR=
                                                                                                                                  .0
            FOR PLAN = 1 RATIO= .00
RCON19 MANE 1.88 1818.28 236.57
                                                                         5.00 1811.20 235.00
                                                                1.86
 CONTINUITY SUMMARY (AC-FT) - INFLOW= .1832E+03 EXCESS= .0000E+00 OUTFLOW= .1832E+03 BASIN STORAGE= .2898E-02 PERCENT ERROR=
                                                                                                                                  .0
                                                                1.84 5.00 1787.73 235.00
            FOR PLAN = 1 RATIO= .00
RCON19 MANE 1.89 1789.80 237.66
 CONTINUITY SUMMARY (AC-FT) - INFLOW= .1809E+03 EXCESS= .0000E+00 OUTFLOW= .1809E+03 BASIN STORAGE= .2791E-02 PERCENT ERROR=
                                                                                                                                  .0
            FOR PLAN = 1 RATIO= .00
RCON19 MANE 2.41 925.16
                                                                          5.00 921.96 240.00
                                                   238.68
                                                                  .94
  CONTINUITY SUMMARY (AC-FT) - INFLOW= .9262E+02 EXCESS= .0000E+00 OUTFLOW= .9263E+02 BASIN STORAGE= .3358E-02 PERCENT ERROR=
                                                                                                                                  .0
            FOR PLAN = 1 RATIO= .00
RCON20 MANE .56 2044.29
                                                                           5.00 2039.68
                                                                                            235.00
                                                                 2.10
                                                   235.85
  CONTINUITY SUMMARY (AC-FT) - INFLOW= .2087E+03 EXCESS= .0000E+00 OUTFLOW= .2087E+03 BASIN STORAGE= .7328E-03 PERCENT ERROR=
                                                                                                                                  .0
            FOR PLAN = 1 RATIO= .00
RCON20 MANE .56 2006.18
                                                                                                            2 06
                                                                           5.00 2000.73
                                                                                            235.00
                                                                 2.06
                                                   235.75
  CONTINUITY SUMMARY (AC-FT) - INFLOW= .2044E+03 EXCESS= .0000E+00 OUTFLOW= .2044E+03 BASIN STORAGE= .7376E-03 PERCENT ERROR=
                                                                                                                                  .0
            FOR PLAN = 1 RATIO= .00
RCON20 MANE .57 1942.31
                                                                            5.00 1935.31
                                                                                                            1.99
                                                                                            235.00
                                                                  1.99
                                                   235.64
  CONTINUITY SUMMARY (AC-FT) - INFLOW= .1972E+03 EXCESS= .0000E+00 OUTFLOW= .1972E+03 BASIN STORAGE= .6937E-03 PERCENT ERROR=
                                                                                                                                   .0
            FOR PLAN = 1 RATIO= .00
RCON20 MANE .58 1871.72
                                                                           5.00 1864.98 235.00
                                                   235.79
                                                                  1.92
  CONTINUITY SUMMARY (AC-FT) - INFLOW= .1901E+03 EXCESS= .0000E+00 OUTFLOW= .1901E+03 BASIN STORAGE= .7025E-03 PERCENT ERROR=
                                                                                                                                   .0
             FOR PLAN = 1 RATIO= .00
RCON20 MANE .58 1840.42 235.43
                                                                  1.89 5.00 1834.24 235.00
                                                                                                          1.89
```

CONTINUITY SUMMAR	Y (AC-FT) - IN	NFLOW= .	.1873E+03	EXCESS=	EXIS .0000E+00	TING.OUT OUTFLOW=	.1873E-	+03 BASIN	STORAGE=	.6843E-03 PERCENT	ERROR=	.0
	N = 1 RATIO= O MANE	.00	1826.16	3 235.	.58 1.	. 87	5.00	1817.88	235.00	1.87		
CONTINUITY SUMMAR	Y (AC-FT) - IN	NFLOW= .	.1853E+03	EXCESS=	.0000E+00	OUTFLOW=	.1853E-	+03 BASIN	STORAGE=	.7252E-03 PERCENT	ERROR=	.0
	N = 1 RATIO= 0 MANE	.00	1813.24	235.	.58 1.	. 85	5.00	1805.07	235.00	1.85		
CONTINUITY SUMMAR	Y (AC-FT) - IN	NFLOW=	.1839E+03	EXCESS=	.0000E+00	OUTFLOW=	.1839E-	+03 BASIN	STORAGE=	.6861E-03 PERCENT	ERROR=	.0
	N = 1 RATIO= 0 MANE	.00 .59	1788.45	5 235.	.48 1.	. 83	5.00	1781.38	235.00	1.83		
CONTINUITY SUMMAR	Y (AC-FT) - I	NFLOW=	.1816E+03	EXCESS=	.0000E+00	OUTFLOW=	: .1816E-	+03 BASIN	STORAGE=	.7265E-03 PERCEN	ERROR=	.0
	N = 1 RATIO= 0 MANE	.00 .74	922.05	5 240.	.78	. 94	5.00	919.90	240.00	.94		
CONTINUITY SUMMAR	Y (AC-FT) - II	NFLOW=	.9284E+02	EXCESS=	.0000E+00	OUTFLOW=	.9284E	+02 BASIN	STORAGE=	.7597E-03 PERCEN	ERROR=	.0
	N = 1 RATIO= B MANE	.00 1.74	439.87	7 237	.27 2	. 03	5.00	439.01	235.00	2.03		
CONTINUITY SUMMAR	Y (AC-FT) - II	NFLOW=	.4783E+02	EXCESS=	.0000E+00	OUTFLOW=	.4783E	+02 BASIN	STORAGE=	.2578E-03 PERCEN	Γ ERROR=	.0
	N = 1 RATIO= B MANE	.00 1.75	432.13	3 236	.45 1	. 99	5.00	430.53	235.00	1.99		
CONTINUITY SUMMAR	Y (AC-FT) - I	NFLOW=	.4685E+02	EXCESS=	.0000E+00	OUTFLOW=	.4685E	+02 BASIN	STORAGE=	.2499E-03 PERCEN	Γ ERROR=	.0
	N = 1 RATIO= B MANE	.00 1.76	417.58	3 236	.27 1	. 92	5.00	416.38	235.00	1.92		
CONTINUITY SUMMAR	Y (AC-FT) - I	NFLOW=	.4522E+02	EXCESS=	.0000E+00	OUTFLOW=	4522E	+02 BASIN	STORAGE=	.2493E-03 PERCEN	r error=	.0
	N = 1 RATIO= B MANE	.00 1.78	403.10	236	.14 1	. 85	5.00	402.16	235.00	1.85		
CONTINUITY SUMMAR	Y (AC-FT) - I	NFLOW=	.4360E+02	EXCESS=	.0000E+00	OUTFLOW=	= .4360E	+02 BASIN	STORAGE=	.2464E-03 PERCEN	Γ ERROR=	.0
	N = 1 RATIO= B MANE	.00 1.78	398.3	4 236	.81 1	. 83	5.00	396.16	235.00	1.83		
CONTINUITY SUMMAR				EXCESS=	.0000E+00	OUTFLOW=	= .4296E	+02 BASIN	STORAGE=	.2533E-03 PERCEN	Γ ERROR=	.0
	N = 1 RATIO= B MANE	.00 1.78	393.5	1 237	.29 1	.81	5.00	392.22	235.00	1.81		
CONTINUITY SUMMAR					.0000E+00	OUTFLOW=	= .4250E	+02 BASIN	STORAGE=	.2248E-03 PERCEN	T ERROR=	.0
	N = 1 RATIO= B MANE	.00 1.79	390.1	0 235	.85 1	.79	5.00	389.58	235.00	1.79		
CONTINUITY SUMMAR					.0000E+00	OUTFLOW=	= .4218E	+02 BASIN	STORAGE=	.2523E-03 PERCEN	T ERROR=	.0
	N = 1 RATIO= B MANE	.00	386.3	9 236	.40 1	.77	5.00	385.05	235.00	1.77		
CONTINUITY SUMMAR										.2662E-03 PERCEN	T ERROR=	.0
	N = 1 RATIO=	.00	203.8	7 238	.08	.91	5.00	202.47	235.00	.91		
CONTINUITY SUMMAR							= .2143E	+02 BASIN	STORAGE=	.2507E-03 PERCEN	T ERROR=	.0

*** NORMAL END OF HEC-1 ***

HYDROLOGIC CRITERIA AND DESIGN MANUAL

TIME OF CONCENTRATION

The Seventy Proposed Conditions

Project No:

840-050 17-Feb-16 MMC

Court Cour		CNA IG			TRAVEL TIME			Tc CHECK		Calculated by:	MMC	DEMIADIC
Dev.ex. CN K Area Area Len		CINA IGE			TRAVEL TIME			7°C	HECK	2	Tlac	DEMADIZE
DEV.EX. CN K AREA AREA (D or E) (16) (2) (3) (4) (D or E) (16) (2) (3) (4) (D or E) (16) (2) (3) (40) (D (33.7) (3) (40) (30) (D (33.7) (34.8) (3.1.1) (0.048.2) (D (3.7) (3.8) (3.000.00 (3.000.00 (D (3.2) (3.846.8) (3.1.1) (0.044.3) (3.000.00 (D (3.8) (0.877.2) (0.6 (0.000.00 (3.1.1) (3.1.1) (3.1.1) (3.1.1) (3.1.2) (3.000.00 <th>INITIAL / OVERLAND</th> <th>ייייייייייייייייייייייייייייייייייייייי</th> <th></th> <th></th> <th>1</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>2</th> <th>KEMAKKS</th>	INITIAL / OVERLAND	ייייייייייייייייייייייייייייייייייייייי			1						2	KEMAKKS
DEV.EX. CN K AREA AREA AREA IDEA (D or E) (16) (2) (3) (4) (D or E) (16) (2) (3) (4) D (33.7) (3) (4) (3) (4) D (16) (2) (3) (4) (3) (4) D (16) (2) (3) (4) (3) (4) (4) (3) (4)	TIME (Ti)	rı)			(±L)			URBANIZ	URBANIZED BASINS		3	
DEV./EX. CN K AREA AREA AREA (D or E) (16) (2) (3) (4) (D or E) (3) (4) (4) (D 0 e) (3) (3) (4) (D 0 e) (3) (3) (3) (3) (D 0 e) (3) (3) (3) (3) (D 0 e) (3) (3) (3) (3) (3) (D 0 e) (3) (3) (3) (3) (3) (3) (3) (D 0 e) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3)			TRAVEL		٧١	V2		TOTAL	Tc =		Tlag =	
(16) (2) (3) (4) (4) (4) (5) (6) (7) (6) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7	LENGTH SLOPE	E I	LENGTH	SLOPE	VELOCITY	VELOCITY	≓ ş	LENGTH	(L/180)+10 Min	Z	0.6Tc/60	Rainfall.
D 93.7 0.8468 31.1 0.0485 D 85 0.7320 28.4 0.0443 D 93 0.8376 19.3 0.0301 D 96 0.8772 0.6 0.0009 D 87 0.7584 6.3 0.0027 D 87 0.7584 1.7 0.0027 D 91 0.8112 5.7 0.0088 D 91 0.8112 5.7 0.0028 D 91 0.8112 5.7 0.0026 D 91 0.8112 5.7 0.0026 D 87 0.7584 10.0 0.0156 D 89.3 0.7888 30.8 0.0481 D 87 0.7584 11.8 0.0184 D 87 0.7584 11.8 0.0116 D 93.8 0.8482 82.7 0.1293 D 96 0.8772 7.1 0.0110 D 96 0.8772 7.1 0.0012 D 98 0.06924 17.5 0.0253 D 82 0.6924 4.1 0.0065			(8)	(8a)	(q6)	(1)	5	(12)	(13)	(14)	(15)	
D 85 0.7320 28.4 0.0443 D 93 0.8376 19.3 0.0301 D 96 0.8772 0.6 0.0009 D 87 0.7584 6.3 0.0097 D 87 0.7584 1.7 0.0027 D 91 0.8112 5.7 0.0088 D 91 0.8112 5.7 0.0088 D 91 0.8112 57.8 0.0927 D 91 0.8112 57.8 0.0027 D 91 0.812 4.6 0.0027 D 87 0.7584 1.6 0.0026 D 87 0.7584 1.0 0.0166 D 87 0.7584 1.0 0.0166 D 89.3 0.7888 30.8 0.0481 D 87 0.7584 1.0 0.0166 D 93.8 0.8482 82.7 0.1293 D 96 0.8772 7.1 0.0110 D 96 0.8772 7.1 0.0110 D 82 0.6924 1.1 0.0065			3020	2.2	3.0	4.5	12.2	3270	28.2	17.3	0.173	2.89
D 93 0.8376 19.3 0.0301 D 96 0.8772 0.6 0.0009 D 87 0.7584 6.3 0.0097 D 87 0.7584 1.7 0.0027 D 91 0.8112 5.7 0.0088 D 91 0.8112 14.5 0.0227 D 91 0.8112 57.8 0.0902 D 87 0.7584 1.6 0.0026 D 98 0.8772 7.1 0.0110 D 96 0.8772 7.1 0.0110 D 96 0.8772 7.1 0.0010 D 82 0.6924 1.1 0.0065 D 82 0.6924 4.1 0.0065	\vdash		2080	2.3	3.1	4.6	8.4	2450	23.6	17.9	0.179	2.96
D 96 0.8772 0.6 0.0009 D 87 0.7584 6.3 0.0098 D 87 0.7584 6.3 0.0098 D 87 0.7584 1.7 0.0027 D 91 0.8112 5.7 0.0088 D 91 0.8112 5.7 0.0088 D 91 0.8112 5.7 0.0027 D 87 0.7584 4.6 0.0027 D 87 0.7584 4.6 0.0073 D 87 0.7584 1.8 0.0059 D 87 0.7584 1.6 0.00291 D 87 0.7584 1.6 0.0059 D 87 0.7584 1.6 0.00291 D 87 0.7584 1.6 0.00291 D 87 0.7584 1.0 0.0116 D 87 0.7584 1.0 0.0116 D 87 0.7584 1.0 0.01251 D 87 0.7584 1.0 0.0126 D 98 0.8772 7.1 0.0110 D 98 0.8772 7.1 0.0110 D 98 0.8772 7.1 0.0110 D 82 0.6924 1.1 0.0065	100 1.00	0 4.7	1630	1.0	2.0	3.1	10.3	1730	19.6	15.0	0.150	2.91
D 87 0.7584 6.3 0.0098 D 87 0.7584 3.0 0.0047 D 87 0.7584 1.7 0.0027 D 91 0.8112 5.7 0.0088 D 91 0.8112 5.7 0.0088 D 91 0.8112 5.7 0.0027 D 91 0.8112 5.7 0.0026 D 87 0.7584 1.6 0.0026 D 87 0.7584 1.6 0.0026 D 87 0.7584 1.6 0.0021 D 87 0.7584 1.6 0.0059 D 87 0.7584 1.6 0.0059 D 87 0.7584 1.6 0.0059 D 87 0.7584 1.6 0.00251 D 87 0.7584 1.6 0.0059 D 87 0.7584 1.6 0.0059 D 87 0.7584 1.0 0.0116 D 87 0.7584 1.0 0.0166 D 87 0.7584 1.0 0.0126 D 88 0.8482 82.7 0.1293 D 96 0.8772 7.1 0.0110 D 82 0.6924 1.5 0.0025 D 82 0.6924 1.1 0.0065	50 1.00	0 2.8	490	1.2	2.2	3.4	3.7	540	13.0	6.5	0.065	2.89
D 87 0.7584 3.0 0.0047 D 87 0.7584 1.7 0.0027 D 91 0.8112 5.7 0.0088 D 91 0.8112 14.5 0.0227 D 91 0.8112 14.5 0.0227 D 91 0.8112 57.8 0.0902 D 87 0.7584 4.6 0.0073 D 87 0.7584 18.6 0.0291 D 87 0.7584 4.6 0.0072 D 87 0.7584 4.6 0.0072 D 87 0.7584 10.0 0.0156 D 87 0.7584 11.8 0.0184 D 87 0.7584 11.8 0.0184 D 87 0.7584 11.8 0.0184 D 87 0.7584 10.0 0.0251 D 88 0.8482 82.7 0.1293 D 96 0.8772 7.1 0.0110 D 96 0.8772 7.1 0.0110 D 82 0.6924 17.5 0.0273 D 82 0.6924 4.1 0.0065	186 13.40	3.5	2700	1.7	2.6	4.0	12.4	2886	26.0	15.9	0.159	3.05
D 87 0.7584 1.7 0.0027 D 91 0.8112 5.7 0.0088 D 91 0.8112 5.7 0.0088 D 91 0.8112 5.7 0.0026 D 91 0.8112 57.8 0.0227 D 87 0.7584 1.6 0.0026 D 87 0.7584 10.0 0.0156 D 87 0.7584 10.0 0.0156 D 89.3 0.7888 30.8 0.0481 D 85 0.7320 16.6 0.0059 D 87 0.7584 11.8 0.0166 D 87 0.7584 16.0 0.0251 D 87 0.7584 16.0 0.0251 D 87 0.7584 16.0 0.0251 D 87 0.7584 11.8 0.0184 D 87 0.7584 11.8 0.0184 D 87 0.7584 10.0 0.0251 D 98 0.872 7.4 0.0116 D 99.8 0.8482 82.7 0.1293 D 96 0.8772 7.1 0.0110 D 96 0.8772 7.1 0.0110 D 82 0.6924 17.5 0.0253 D 82 0.6924 4.1 0.0065	50 2.00	0 3.5	1400	2.7	3.3	5.0	5.5	1450	18.1	8.9	0.089	2.99
D 91 0.8112 5.7 0.0088 D 91 0.8112 14.5 0.0227 D 91 0.8112 57.8 0.0902 D 87 0.7584 4.6 0.0073 D 87 0.7584 10.0 0.0156 D 87 0.7584 10.0 0.0156 D 87 0.7584 4.6 0.0072 D 89.3 0.7888 30.8 0.0481 D 85 0.7320 16.6 0.0259 D 87 0.7584 11.8 0.0169 D 87 0.7584 14.0 0.0059 D 87 0.7584 16.0 0.0259 D 87 0.7584 17.9 0.0166 D 87 0.7584 17.9 0.0166 D 87 0.7584 10.0 0.0251 D 87 0.7584 1.5 0.0023 D 98 0.8772 7.1 0.0110 D 96 0.8772 7.1 0.0110 D 82 0.6924 17.5 0.0253 D 82 0.6924 4.1 0.0065	100 1.00	0 6.1	222	6.8	5.3	8.0	0.7	322	11.8	6.9	0.069	2.96
D 91 0.8112 14.5 0.0227 D 91 0.8112 57.8 0.0902 D 87 0.7584 4.6 0.0026 D 87 0.7584 4.6 0.0073 D 87 0.7584 10.0 0.0156 D 87 0.7584 4.6 0.0072 D 87 0.7584 4.6 0.0072 D 89.3 0.7888 30.8 0.0481 D 85 0.7320 16.6 0.0259 D 85 0.7320 16.6 0.0259 D 87 0.7584 1.8 0.0051 D 87 0.7584 1.8 0.0166 D 87 0.7584 1.0 0.0023 D 87 0.7584 1.0 0.0129 D 87 0.7584 1.0 0.0129 D 98 0.8772 7.1 0.0110 D 96 0.8772 7.1 0.0110 D 96 0.8772 7.1 0.0110 D 82 0.6924 1.1 0.0065	110 1.00	0 5.5	1200	1.1	2.1	3.2	7.6	1310	17.3	13.0	0.130	3.09
D 91 0.8112 57.8 0.0902 D 87 0.7584 1.6 0.0026 D 87 0.7584 1.6 0.0026 D 87 0.7584 1.6 0.00291 D 87 0.7584 1.6 0.0051 D 87 0.7584 1.6 0.0052 D 89.3 0.7888 30.8 0.0481 D 85 0.7320 16.6 0.0259 D 85 0.7320 16.6 0.0259 D 87 0.7584 1.8 0.0164 D 87 0.7584 1.8 0.0051 D 87 0.7584 1.8 0.0165 D 87 0.7584 1.0 0.0166 D 87 0.7584 1.5 0.0023 D 93.8 0.8482 82.7 0.1293 D 96 0.8772 7.1 0.0110 D 96 0.8772 7.1 0.0110 D 82 0.6924 25.4 0.0357 D 82 0.6924 4.1 0.0065	110 1.00	0 5.5	1360	3.4	3.7	5.6	4.8	1470	18.2	10.2	0.102	3.08
D 87 0.7584 1.6 0.0026 D 87 0.7584 4.6 0.0073 D 87 0.7584 18.6 0.00591 D 87 0.7584 10.0 0.0156 D 87 0.7584 4.6 0.0072 D 89.3 0.7584 4.6 0.0072 D 89.3 0.7888 30.8 0.0481 D 85 0.7320 16.6 0.0259 D 87 0.7584 4.4 0.0069 D 87 0.7584 11.8 0.0184 D 87 0.7584 1.5 0.0023 D 87 0.7584 1.5 0.0023 D 93.8 0.8482 82.7 0.1293 D 96 0.8772 7.1 0.0110 D 96 0.8772 7.8 0.0122 D 98 0.6924 25.4 0.0397 D 82 0.6924 4.1 0.0065	110 1.00	0 5.5	3000	2.5	3.2	4.8	11.2	3110	27.3	16.7	0.167	3.03
D 87 0.7584 4.6 0.0073 D 87 0.7584 18.6 0.0291 D 87 0.7584 10.0 0.0156 D 87 0.7584 4.6 0.0072 D 89.3 0.7888 30.8 0.0481 D 85 0.7320 16.6 0.0259 D 87 0.7584 4.4 0.0069 D 87 0.7584 11.8 0.0184 D 87 0.7584 11.8 0.0184 D 87 0.7584 16.0 0.0251 D 87 0.7584 16.0 0.0251 D 87 0.7584 17.0 0.0116 D 87 0.7584 10.0 0.0251 D 87 0.7584 10.0 0.0251 D 87 0.7584 1.5 0.0023 D 98 0.8482 82.7 0.1293 D 96 0.8772 7.1 0.0110 D 82 0.6924 25.4 0.0397 D 82 0.6924 4.1 0.0065	35 5.60	0 2.0	730	2.9	3.4	5.2	3.2	765	14.3	5.2	0.052	3.08
1 D 87 0.7584 18.6 0.0291 2 D 87 0.7584 10.0 0.0156 D 87 0.7584 4.6 0.0072 D 89.3 0.7888 30.8 0.0481 D 85 0.7320 16.6 0.0259 D 87 0.7584 4.4 0.0069 D 87 0.7584 1.8 0.0184 D 87 0.7584 16.0 0.0251 D 87 0.7584 1.6 0.0023 D 87 0.7584 1.5 0.0023 D 87 0.7584 1.5 0.0023 D 98 0.8482 82.7 0.1293 D 96 0.8772 7.1 0.0110 D 96 0.8772 7.8 0.0397 D 82 0.6924 4.1 0.0065 D 82 0.6924 4.1	40 2.50	0 2.9	1511	2.2	3.0	4.5	6.5	1551	18.6	9.4	0.094	3.03
D 87 0.7584 10.0 0.0156 D 87 0.7584 4.6 0.0072 D 89.3 0.7888 30.8 0.0481 D 85 0.7320 16.6 0.0259 D 87 0.7584 4.4 0.0069 D 87 0.7584 11.8 0.0184 D 87 0.7584 16.0 0.0251 D 87 0.7584 16.0 0.0251 D 87 0.7584 16.0 0.0251 D 87 0.7584 17.9 0.0116 D 87 0.7584 1.5 0.0023 D 87 0.7584 1.5 0.0023 D 87 0.7584 1.5 0.0120 D 87 0.7584 1.5 0.0120 D 88 0.8482 82.7 0.1293 D 96 0.8772 7.1 0.0110 D 96 0.8772 7.1 0.0110 D 82 0.6924 17.5 0.0273 D 82 0.6924 4.1 0.0065	300 3.70	6.9	4120	1.1	2.1	3.2	22.7	4420	34.6	29.6	0.296	3.01
D 87 0.7584 4.6 0.0072 D 89.3 0.7888 30.8 0.0481 D 85 0.7320 16.6 0.0259 D 87 0.7584 4.4 0.0069 D 87 0.7584 11.8 0.0184 D 87 0.7584 16.0 0.0251 D 87 0.7584 1.5 0.0023 D 87 0.7584 1.5 0.0023 D 87 0.7584 1.5 0.0023 D 93.8 0.8482 82.7 0.1293 D 96 0.8772 7.1 0.0110 D 96 0.8772 7.1 0.0110 D 82 0.6924 4.1 0.0065 D 82 0.6924 4.1 0.0065	300 2.30	0 8.1	2500	2.2	3.0	4.5	10.1	2800	25.6	18.2	0.182	3.04
D 89.3 0.7888 30.8 0.0481 D 85 0.7320 16.6 0.0259 D 85 0.7320 32.8 0.0513 D 87 0.7584 4.4 0.0069 D 87 0.7584 11.8 0.0184 D 87 0.7584 1.5 0.00251 D 87 0.7584 1.5 0.0023 D 93.8 0.8482 82.7 0.1293 D 96 0.8772 7.1 0.0110 D 96 0.8772 7.1 0.0110 D 82 0.6924 25.4 0.0397 D 82 0.6924 4.1 0.0065	80 7.50	0 2.8	1575	2.6	3.3	4.9	6.2	1655	19.2	9.0	0.090	2.99
D 85 0.7320 16.6 0.0259 D 85 0.7320 32.8 0.0513 D 87 0.7584 4.4 0.0069 D 87 0.7584 11.8 0.0184 D 87 0.7584 16.0 0.0251 D 87 0.7584 1.5 0.0023 D 93.8 0.8482 82.7 0.1293 D 96 0.8772 7.1 0.0110 D 96 0.8772 7.1 0.0110 D 82 0.6924 25.4 0.0397 D 82 0.6924 4.1 0.0065	380 1.30	0 10.0	4170	2.4	3.1	4.7	15.6	4550	35.3	25.6	0.256	3.06
D 85 0.7320 32.8 0.0513 D 87 0.7584 4.4 0.0069 D 87 0.7584 11.8 0.0184 D 87 0.7584 16.0 0.0251 D 87 0.7584 1.5 0.0023 D 87 0.7584 1.5 0.0023 D 93.8 0.8482 82.7 0.1293 D 96 0.8772 7.1 0.0110 D 96 0.8772 7.1 0.0110 D 96 0.8772 7.8 0.0122 D 82 0.6924 25.4 0.0397 D 82 0.6924 4.1 0.0065	170 1.00	0 8.6	1360	2.0	2.9	4.3	6.2	1530	18.5	14.9	0.149	3.07
D 87 0.7584 4.4 0.0069 D 87 0.7584 11.8 0.0184 D 87 0.7584 16.0 0.0251 D 87 0.7584 7.4 0.0116 D 87 0.7584 7.4 0.0116 D 93.8 0.8482 82.7 0.1293 D 96 0.8772 7.1 0.0110 D 96 0.8772 7.1 0.0122 D 98 0.6924 25.4 0.0397 D 82 0.6924 4.1 0.0065	110 1.00	6.9 0	2500	2.4	3.1	4.7	9.7	2610	24.5	16.6	0.166	3.00
D 87 0.7584 11.8 0.0184 D 87 0.7584 16.0 0.0251 D 87 0.7584 7.4 0.0116 D 87 0.7584 7.4 0.0116 D 98 0.8482 82.7 0.1293 D 96 0.8772 7.1 0.0110 D 96 0.8772 7.1 0.0110 D 98 0.6924 25.4 0.0397 D 82 0.6924 4.1 0.0065 D 82 0.6924 9.4 0.0147	130 1.00	0 2.0	1140	2.5	3.2	4.8	4.8	1270	17.1	11.8	0.118	3.05
D 87 0.7584 16.0 0.0251 D 87 0.7584 7.4 0.0116 D 87 0.7584 1.5 0.0023 D 93.8 0.8482 82.7 0.1293 D 96 0.8772 7.1 0.0110 D 96 0.8772 7.8 0.0122 D 82 0.6924 25.4 0.0397 D 82 0.6924 4.1 0.0065 D 82 0.6924 9.4 0.0147	125 1.00	0 6.9	2500	2.7	3.3	5.0	9.1	2625	24.6	16.0	0.160	2.99
D 87 0.7584 7.4 0.0116 D 87 0.7584 1.5 0.0023 D 93.8 0.8482 82.7 0.1293 D 96 0.8772 7.1 0.0110 D 96 0.8772 7.8 0.0122 D 82 0.6924 17.5 0.0273 D 82 0.6924 4.1 0.0065 D 82 0.6924 6.4 0.0147	240 1.00	0 9.5	3200	2.5	3.2	4.8	11.9	3440	29.1	21.4	0.214	3.06
D 87 0.7584 1.5 0.0023 D 93.8 0.8482 82.7 0.1293 D 96 0.8772 7.1 0.0110 D 96 0.8772 7.8 0.0122 D 82 0.6924 25.4 0.0397 D 82 0.6924 4.1 0.0065 D 82 0.6924 9.4 0.0147	180 2.70	0 5.9	2170	2.5	3.2	4.9	8.3	2350	23.1	14.2	0.142	3.05
D 93.8 0.8482 82.7 0.1293 D 96 0.8772 7.1 0.0110 D 96 0.8772 7.8 0.0122 D 82 0.6924 25.4 0.0397 D 82 0.6924 4.1 0.0065 D 82 0.6924 9.4 0.0147	220 3.20	0 6.2	260	4.6	4.3	6.6	1.0	480	12.7	7.2	0.072	2.99
96 0.8772 7.1 0.0110 96 0.8772 7.8 0.0122 82 0.6924 25.4 0.0397 82 0.6924 4.1 0.0065 82 0.6924 9.4 0.0147	35 2.00	0 2.1	4890	2.4	3.1	4.7	18.1	4925	37.4	20.2	0.202	2.91
D 96 0.8772 7.8 0.0122 D 82 0.6924 25.4 0.0397 D 82 0.6924 4.1 0.0065 D 82 0.6924 9.4 0.0147	150 2.70	0 3.5	860	2.9	3.4	5.2	3.6	1010	15.6	7.1	0.071	2.91
D 82 0.6924 25.4 0.0397 D 82 0.6924 17.5 0.0273 D 82 0.6924 4.1 0.0065 D 82 0.6924 9.4 0.0147	100 1.00	0 4.0	1560	1.6	2.6	3.9	7.8	1660	19.2	11.8	0.118	2.90
D 82 0.6924 17.5 0.0273 D 82 0.6924 4.1 0.0065 D 82 0.6924 9.4 0.0147	165 4.20	0 5.8	2040	3.0	3.5	5.3	7.2	2205	22.3	13.1	0.131	3.08
D 82 0.6924 4.1 0.0065 D 82 0.6924 94 0.0147	180 5.00	0 5.8	2700	2.5	3.2	4.8	10.2	2880	26.0	15.9	0.159	3.00
D 82 0.6924 9.4 0.0147	135 12.00	3.7	200	1.7	2.6	4.0	3.2	635	13.5	6.9	0.069	2.96
	125 4.00	0 5.2	1420	2.9	3.4	5.2	5.4	1545	18.6	10.5	0.105	3.05
D 93 0.8376 2.3 0.0035	20 4.00	1.3	785	1.7	2.6	4.0	4.4	805	14.5	5.7	0.057	3.04
12.2 0.0190	65 6.20	.0 3.2	1950	8.7	6.0	9.0	4.1	2015	21.2	7.3	0.073	2.99

Printed: 2/25/2016 4:41 PM File: Badlands_sf4 Proposed Basins.xls

Page 1 of 2

	1															
3.06	2.98	2.95	3.08	3.04	3.00	2.98	2.97	2.95	2.93	2.93	2.91	2.88				
0.232	0.079	0.073	0.121	0.107	0.193	0.111	0.083	0.212	0.090	0.099	0.097	0.198	ć	(8/100)	(8/100)1/2	STANDARD FORM 4
23.2	7.9	7.3	12.1	10.7	21.5	11.1	8.3	21.2	9.0	6.6	9.7	63.1		$V1 = 20.2*(S/100)^{1/2}$	$V2 = 30.6*(S/100)^{1/2}$	NDARD
28.8	18.7	13.4	18.5	19.7	19.3	22.2	21.6	25.2	19.2	20.2	19.8	19.8		Developed:		STA
3375	1560	620	1525	1750	1675	2190	2095	2740	1653	1835	1770	1759				
18.2	5.5	2.3	4.8	5.2	14.1	7.0	6.9	5.6	7.0	8.3	5.8	0.09		100)1/2	100) ^{1/2}	
3.1	5.2	3.9	5.4	5.8	2.2	5.6	5.6	4.9	4.2	4.0	5.1	0.5		$V1 = 14.8*(S/100)^{1/2}$	$V2 = 29.4*(S/100)^{1/2}$	
2.0	3.4	2.6	3.6	3.8	1.4	3.7	3,7	3.2	2.8	2.6	3.4	0.3		Existing:		
1.0	2.9	1.6	3.1	3.6	0.5	3.3	3.3	2.5	1.9	1.7	2.8	0.03				
3085	1460	350	1300	1540	1575	2070	2050	2565	1515	1735	1530	1650		el distance;	ď.	
5.0	2.4	5.0	7.2	5.5	7.3	4.1	1.4	11.5	2.0	1.5	3.8	3.1	ions,	of travel dis	V2 applies to the remaining travel distance.	
15.50	29.00	13.70	3.50	7.10	1.00	7.50	45.00	0.60	15.50	21.00	5.00	2.80	t) calculat	500 feet	aining tra	
290	100	270	225	210	100	120	45	175	138	100	240	109	vel time (T	to the first	to the rem	MPU
0.0399	0.0177	0.0080	0.0182	0.0187	0.0054	0.0335	0.0171	0.0289	0.0169	0.0304	0.0330	0.0272	For the travel time (Tt) calculations,	V1 applies to the first 500 feet of trav	V2 applies	ced from
25.5	11.4	5.1	11.6	12.0	3.5	21.5	10.9	18.5	10.8	19.5	21.1	17.4				eferenc
0.6924	0.6924	0.6924	0.6924	0.6924	0.6924	0.6924	0.6924	0.6924	0.8640	0.8640	0.8640	0.8640	Tlag = 0.6 Tc			values r
82	82	82	82	82	82	82	82	82	95	95	95	95	Tlag =	2 / S1/3	.39	C
٥	٥	۵	۵	٥	٥	۵	۵		۵	۵	۵		+ 14	$Ti = 1.8 (1.1 - K) L^{1/2} / S^{1/3}$	K = 0.0132 (CN) - 0.39	REFERENCE: CN values referenced from MPU
6NO	ON10	ON11R	ON12	ON13	ON14	ON15R	ON16R	ON18R	DON1	DON2	DON3	DON4	Tc = Ti + Tt	Ti = 1.8	K = 0.01	

1************* FLOOD HYDROGRAPH PACKAGE (HEC-1) JUN 1998 VERSION 4.1 RUN DATE 03MAR16 TIME 10:06:14 *

U.S. ARMY CORPS OF ENGINEERS HYDROLOGIC ENGINEERING CENTER 609 SECOND STREET DAVIS, CALIFORNIA 95616 (916) 756-1104 *

THIS PROGRAM REPLACES ALL PREVIOUS VERSIONS OF HEC-1 KNOWN AS HEC1 (JAN 73), HEC1GS, HEC1DB, AND HEC1KW.

THE DEFINITIONS OF VARIABLES -RTIMP- AND -RTIOR- HAVE CHANGED FROM THOSE USED WITH THE 1973-STYLE INPUT STRUCTURE.
THE DEFINITION OF -AMSKK- ON RM-CARD WAS CHANGED WITH REVISIONS DATED 28 SEP 81. THIS IS THE FORTRAN77 VERSION
NEW OPTIONS: DAMBREAK OUTFLOW SUBMERGENCE, SINGLE EVENT DAMAGE CALCULATION, DSS:WRITE STAGE FREQUENCY,
DSS:READ TIME SERIES AT DESIRED CALCULATION INTERVAL LOSS RATE:GREEN AND AMPT INFILTRATION
KINEMATIC WAVE: NEW FINITE DIFFERENCE ALGORITHM

KINEMATIC WA	VE: NEW FINITE DIFFERENCE ALGORITHM		
	HEC-1 INPUT	PAGE	1
1	ID1345678910		
LINE	ID12		
	*DIAGRAM		
*** FREE *** 1	ID		
2	ID *		
3 4	ID *: THE SEVENIY . *		
5	TD *: PROPOSED CONDITIONS : *		
2 3 4 5 6 7 8 9	ID *:		
8 9	ID *: DISTRIBUTION 840 050 :*		
10 11	ID *: PROJECT NO 840.050 : * ID *: PROJECT NO PROPOSED.H1 : * ID *: FILENAME PROPOSED.H1 : *		
12 13	ID *: DATE MODELED 2/22/16 : *		
13 14	ID *: MODELED BY 5444, Fine, 1444		
15			
14 15 16 17	ID ####################################		
18	ID REFERENCED HYDROLOGIC MODELS:		
20	ID 2013 LAS VEGAS VALLEY FLOOD CONTROL MASSIS (PBS&1 1997)		
21 22	TD CLARK COUNTY REGIONAL FLOOD CONTROL DISTRICT 2000		
23	ID GOWAN WATERSHED (ALL) ID RECOMMENDED DRAINAGE SYSTEM WITH ULTIMATE DEVELOPMENT		
25	ID INPUT FILE = ALLGOWS.DAI		
26 27	TO DESTGN STORM = 100-TEAR O'IN STORM		
28	ID STORM DISTRIBUTION = SDN #3 ID MODELED BY PBS&J (MICHELE L. D'ALESSANDRO, E.I., CFM)		
30	ID CHECKED BY PBS&J (HARSHAL B. DESAL, 1.12.)		
31 32	ID STORM CENTERING = FULL WATERSHED ID JR CARDS CONTAIN DARFS BASED ON THE FOLLOWING VALUES:		
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36	ID AREA DARF		
35	ID SQ. MI.		
36 37	ID 0.5-1 0.975 ID 1-2 0.95		
38	2-3 0.925		
39 40 41	ID 3-4 0.913		
41 42	TD 5-6 0.903		
43	ID 6-7 0.895 ID 10YR 0.570		
44 45	ID CONTROL DEPTH-AREA REDUCTION FACTORS (DARF'S)		
46 47	ID and		
48	ID 100-YEAR, 6-HOUR STORM, SDN3		
49 50	TT 5 0 0 700 TO 5 0 0		
51 52	TN 5 0 0 0.035 0.015 0.008 0.903 0.895 0.570		
53	JR PREC 0.99 0.975 0.95 0.925 0.915 0.900 0.900	PAGE	2
1	HEC-1 INPUT	17.02	-
LINE	ID12345678910		
EINE			
54	KK ON1		
55 56	KM OFFSITE BASIN ON1 PB 3.08		
57	BA 0.0397 0.03 0.057 0.07 0.087 0.108 0.124 0.13 0.13 0.13		
58 59	PC 0.13 0.13 0.14 0.142 0.148 0.158 0.1/2 0.181		
60			
61 62	PC 0.499 0.59 0.71 0.744 0.781 0.812 0.819 0.833 0.831 0.836		
63 64	PC 0.982 0.985 0.987 0.989 0.99 0.993 0.993 0.994 0.995 0.998		
65	PC 0.998 0.999 1		
66	Page 1		

```
PROPOSED.OUT
                                    .131
 67
                         UD
                                57B-3A
ONSITE BASIN 57B-3A
3.07
0.0259
  68
69
70
71
72
73
                         KK
KM
PB
BA
LS
UD
                                                      85
                                     .149
  74
75
76
                         KK
KM
HC
                                CON1
COMBINE 57B-3A AND ON1
2
                                RCON1
ROUTE CON1 TO CON2
LENGTH SLOPE n
3020 .027
  77
78
79
80
                         KK
KM
KM
RD
                                                               n-VALUE
.040
                                                                                            SHAPE
                                                                                                            WIDTH
50
                                                                                                                          S-SLOPE
                                57B-3B

OFFSITE BASIN 57B-3B

3.00

0.0513

0 85

.166
  81
82
83
84
85
86
                          KK
KM
PB
BA
LS
UD
                                ON2
OFFSITE BASIN ON2
3.00
0.0273
0 82
.159
  87
88
89
90
91
                          KK
KM
PB
BA
LS
UD
                                                                                                                                                                                     PAGE 3
                                                                                HEC-1 INPUT
                          ID......1.....2.....3.....4.....5.....6......7.....8......9.....10
LINE
                                CON2
COMBINE CON1, 57B-3B AND ON2
   93
94
95
 96
97
98
99
100
101
                                 57B-3D
OFFSITE BASIN 57B-3D
2.99
0.0184
                          KK
KM
PB
BA
LS
UD
*
                                                        87
                                     .160
                                 ON3R
ONSITE BASIN ON3R
2.96
0.0065
0 82
.069
 102
103
104
105
106
107
                          KK
KM
PB
BA
LS
UD
*
                                  CON3R COMBINE CON2, 57B-3D AND ON3R 3
 108
109
110
                                 ON5
OFFSITE BASIN ON5
3.05
0.0147
  111
112
113
114
115
116
                           KK
KM
PB
BA
LS
UD
                                                        82
                                       .105
                                  57B-3C
OFFSITE BASIN 57B-3C
3.05
0.0069
  117
118
119
120
121
122
                           KK
KM
PB
BA
LS
UD
                                                        87
                                      .118
                                  ON6
OFFSITE BASIN ON6
3.04
0.0035
0 93
.057
  123
124
125
126
127
128
                           KK
KM
PB
BA
LS
UD
                                                                                                                                                                                       PAGE 4
                                                                                  HEC-1 INPUT
                            ID.....1....2.....3.....4.....5.....6.....7.....8.....9.....10
 LINE
                                   CON6
COMBINE 57B-3C AND ON6
2
   129
130
131
                            KK
KM
HC
                            KK
KM
HC
                                   COMBINE ON5 AND CON6
                                     CCON6
                                   RCCON6
ROUTE CCON6 TO CON8
LENGTH SLOPE n-VALUE
2015 .037 .040
                            KK
KM
KM
   135
136
137
138
                                                                                                                           S-SLOPE
2
                                                                                               SHAPE
TRAP
                                                                                                               WIDTH
20
```

```
PROPOSED.OUT
                                                              ON8
ONSITE BASIN ON8
2.99
0.0190
                                                       KK
KM
PB
BA
LS
UD
                                                                                              82
                                                                      .073
                                                                CON8
COMBINE CCON6 AND ON8
                                                       KK
KM
HC
*
                                                                SW11
REFERENCED FROM 2013 MPU
0.589
3.34
0 87.8
                      148
149
150
151
152
153
                                                        KK
KM
BA
PB
LS
UD
                                                                    0.311
                                                                  RSW11
REFERENCED FROM 2013 MPU
ROUTE SW11 TO CSW17
FACTLITY = ANGEL PARK - CHARLESTON BOULEVARD
FACTLITY # = APCB 0064, 0080
LINING = RCB
2338 0.0167 0.015 0 TRAP
                       154
155
156
157
158
159
160
                                                                                                                                                                                                    0
                                                                 SW17
REFERENCED FROM 2013 MPU
0.356
3.30
0 87.8
0.271
                        161
162
163
164
165
166
                                                         KK
KM
BA
PB
LS
UD
                                                                                                                                                                                                                                                                            PAGE 5
                                                                                                                                   HEC-1 INPUT
                                                          ID......1.....2.....3.....4.....5......6.....7.....8.....9.....10
                      LINE
                                                                    CSW17
REFERENCED FROM 2013 MPU
COMBINE RSW11 AND SW17
                        167
168
169
170
                                                                    RCSW17
REFERENCED FROM 2013 MPU
ROUTE CSW17 TO CSW18
FACILITY = ANGEL PARK - CHARLESTON BOULEVARD
FACILITY # = APCB 0000,0001,0019,0050
LINING = RCB
3600 0.014 0.015 0 TRAP
                         171
172
173
174
175
176
177
                                                                                                                                                                                                      0
                                                                                                                                                                                11
                                                                     SW18
REFERENCED FROM 2013 MPU
0.405
3.27
                          178
179
180
181
182
183
                                                            KK
KM
BA
PB
LS
UD
                                                                       0.271
                                                                                              86.8
                                                                      CSW18
REFERENCED FROM 2013 MPU
COMBINE RCSW17 AND SW18
2
                                                            KK
KM
KM
HC
                                                                    RCSW18

REFERENCED FROM 2013 MPU
ROUTE CSW18 TO C12A
FACILITY = ANGEL PARK SOUTH
FACILITY # = APSO 0254,0255,0258,0345,0346; APCB 0000
NATURAL WASH
LENGTH = 5,200
SLOPE = 1.4%
N = 0.040
HYDRAULIC RADIUS = 1.5
VELOCITY = 9.2
2 0.157 0.15
                           188
189
190
191
192
193
194
195
196
197
198
199
                                                                       12A
REFERENCED FROM 2013 MPU
0.392
3.20
0.264
                            200
201
202
203
204
205
                                                              KK
KM
BA
PB
LS
UD
                                                                                                                                                                                                                                                                                 PAGE 6
                                                                                                                                        HEC-1 INPUT
1
                                                               ID.....1....2....3.....4.....5.....6.....7.....8.....9.....10
                           LINE
                                                                         C12A
REFERENCED FROM 2013 MPU
COMBINE 12A AND RCSW18
2
                             206
207
208
209
                                                                         RC12A
REFERENCED FROM 2013 MPU
ROUTE THRU 12B
FACILITY # ANGEL PARK SOUTH
FACILITY # = APSO 0204, 0205
NATURAL WASH
LENGTH = 2,600
SLOPE = 3.5%
N = 0.040
                              210
211
212
213
214
215
216
217
218
```

Page 3

```
HYDRAULIC RADIUS = 1.5
VELOCITY = 14.5
1 0.05 0.15
                                                   12B
REFERENCED FROM 2013 MPU
0.260
3.13
0 91.0
0.233
                 222
223
224
225
226
227
                                            KK
KM
BA
PB
LS
UD
                                                    C12B
REFERENCED FROM 2013 MPU
COMBINE 12B AND RC12A
2
                                                    57B-2A

OFFSITE BASIN 57B-2A

3.05

0.098

0 87

.159
                                             KK
KM
PB
BA
LS
UD
                                                    57B-3F
OFFSITE BASIN 57B-3F
3.05
0.0116
0 87
.142
                                             KK
KM
PB
                  238
239
240
241
242
243
                                              BA
LS
UD
*
                                                                                                                                                                                                                    PAGE 7
                                                                                                       HEC-1 INPUT
                                              ID.....1....2....3.....4.....5.....6.....7.....8.....9.....10
                 LINE
                                                     57B-3E

OFFSITE BASIN 57B-3E

3.06

0.0251

0 87
                   244
245
246
247
248
249
                                              KK
KM
PB
BA
LS
UD
*
                                                          .214
                                                     ON9
ONSITE BASIN ON9
3.06
0.0399
0 82
.232
                    250
251
252
253
254
255
                                               KK
KM
PB
BA
LS
UD
                                               KK
KM
HC
*
                                                      CON9
COMBINE C12B, 57B-2A, 57B-3F, 57B-3E AND ON9
                     256
257
258
                                                KK
KM
KM
                                                        RCON9
ROUTE CON9 TO CON10
LENGTH SLOPE n-VALUE
1540 .030 .040
                     259
260
261
262
                                                                                                                                        WIDTH
50
                                                                                                                                                       S-SLOPE
2
                                                                                                               0
                                                RD
                                                       57B-3G

OFFSITE BASIN 57B-3G

2.99

0.0023

0 87

.072
                     263
264
265
266
267
268
                                                KK
KM
PB
BA
LS
UD
                                                        57B-2B
OFFSITE BASIN 57B-2B
2.99
0.0047
                     269
270
271
272
273
274
                                                 KK
KM
PB
BA
LS
UD
                                                             .089
                                                        57B-2C
OFFSITE BASIN 57B-2C
2.96
0.0027
                       275
276
277
278
279
280
                                                 KK
KM
PB
BA
LS
UD
                                                             .069
                                                                                                                                                                                                                       PAGE 8
                                                                                                           HEC-1 INPUT
1
                                                  ID......1.....2.....3.....4.....5.....6.....7.....8.....9......10
                     LINE
                                                        ON10
ONSITE BASIN ON10
2.98
0.0177
0 82
.079
                       281
282
283
284
285
286
                                                  KK
KM
PB
BA
LS
UD
                                                          CON10 COMBINE CON9, 57B-3G, 57B-2B, 57B-2C AND ON10 ^{5}
                        287
288
289
                                                           CCON10
COMBINE CON8 AND CON10
2
```

```
ON11R
ONSITE BASIN ON11R
2.95
0.0080
                                                   KK
KM
PB
BA
LS
UD
                                                                                   82
                                                               .073
                                                          CON11R
COMBINE CCON10 AND ON11R
2
                                                   KK
KM
HC
                        302
303
304
305
306
307
                                                           57B-2D

OFFSITE BASIN 57B-2D

3.09

0.0088

0 91

.130
                                                   KK
KM
PB
BA
LS
UD
                                                           57B-2E
OFFSITE BASIN 57B-2E
3.08
0.0227
0 91
.102
                        308
309
310
311
312
313
                                                   KK
KM
PB
BA
LS
UD
                                                   KK C57B-2E
KM COMBINE 57B-2D AND 57B-2E
HC 2
                        314
315
316
                                                                                                                                                                                                                                PAGE 9
                                                                                                                HEC-1 INPUT
1
                                                    ID.....1....2.....3.....4.....5.....6.....7.....8.....9.....10
                      LINE
                                                   KK 57B-2G1
KM OFFSITE BASIN 57B-2G1
PB 3.08
BA 0.0026
LS 0 87
UD .052
                        317
318
319
320
321
322
                                                          ON12
ONSITE BASIN ON12
3.08
0.0182
0 82
                        323
324
325
326
327
328
                                                    KK
KM
PB
BA
LS
UD
                                                           CON12
COMBINE C57B-2E, 57B-2G1 AND ON12
3
                        329
330
331
                                                    KK 57B-2G2
KM OFFSITE BASIN 57B-2G2
PB 3.03
BA 0.0073
LS 0 87
UD .094
                        332
333
334
335
336
337
                        338
339
340
341
342
343
                                                           ON13
ONSITE BASIN ON13
3.04
0.0187
                                                     KK
KM
PB
BA
LS
UD
                                                                                     82
                                                                 .107
                                                             \begin{array}{c} \text{CON13} \\ \text{COMBINE} \\ \text{3} \end{array} \text{CON12, 57B-2G2 AND ON13} 
                         344
345
346
                                                            57B-2F

OFFSITE BASIN 57B-2F

3.03

0.0902

0 91

.167
                         347
348
349
350
351
352
                                                     KK
KM
PB
BA
LS
UD
                                                                                                                                                                                                                                  PAGE 10
                                                                                                                  HEC-1 INPUT
 1
                                                     ID.....1....2.....3.....4.....5.....6.....7....8.....9.....10
                        LINE
                                                    KK 57B-2H2
KM OFFSITE BASIN 57B-2H2
PB 3.04
BA 0.0156
LS 0 87
UD .182
                         353
354
355
356
357
358
                                                            ON14
ONSITE BASIN ON14
3.00
0.0054
0 82
                          359
360
361
362
363
364
                                                      KK
KM
PB
BA
LS
UD
                                                                  .193
                          365
366
367
                                                      KK
KM
HC
                                                              CON14
COMBINE C57B-2F, 57B-2H2 AND ON14
```

Page 5

```
RCON14
ROUTE CON14 TO CON15R
LENGTH SLOPE n-VALUE
2160 .032 .040
                                                                                                                                    WIDTH S-SLOPE
20 2
                                                                                                                  SHAPE
TRAP
                                                    57B-2I
OFFSITE BASIN 57B-2I
2.99
0.0072
0 87
                   372
373
374
375
376
377
                                             KK
KM
PB
BA
LS
UD
                                                         .090
                                             KK 57B-2H1
KM OFFSITE BASIN 57B-2H1
PB 3.01
BA 0.0291
LS 0 87
UD .296
                   378
379
380
381
382
383
                                                     ON15R
ONSITE BASIN ON15R
2.98
0.0335
0 82
.111
                    384
385
386
387
                                              KK
KM
PB
BA
LS
UD
                    388
                                                                                                                                                                                                                 PAGE 11
                                                                                                       HEC-1 INPUT
                                              ID.....1....2....3.....4.....5.....6.....7.....8.....9....10
                  LINE
                                                     CON15R COMBINE CON13, CON14, 57B-21, 57B-2H1 AND ON15R
                    390
391
392
                                                      ON16R
ONSITE BASIN ON16R
2.97
0.0171
                     393
394
395
396
397
398
                                               KK
KM
PB
BA
LS
UD
                                                           .083
                                               KK
KM
HC
                     399
400
401
                                                       CON16R
COMBINE CON15R AND ON16R
2
                                                       CPPH1
COMBINE CON3R, CON11R AND CON16R
                     402
403
404
                                                      DON1
ONSITE BASIN DON1
2.93
0.0169
                     405
406
407
408
409
410
                                                KK
KM
PB
BA
LS
UD
                                                                              95
                                                           .090
                     411
412
413
414
415
416
                                                       DON2
ONSITE BASIN DON2
2.93
0.0304
                                                KK
KM
PB
BA
LS
UD
                                                                              95
                                                            .099
                      417
418
419
                                                 KK
KM
                                                        CDON2 COMBINE CCON16R, CDON1 AND DON2 3
                                                 HC
                                                        RCDON2
ROUTE CDON2 TO CDON3
LENGTH SLOPE n-VALUE
1000 .048 .016
                      420
421
422
423
                                                 KK
KM
KM
RD
                                                                                                                                                      S-SLOPE
50
                                                                                                                       SHAPE
                                                                                                                                       WIDTH
10
                                                                                                              0
                                                                                                                                                                                                                   PAGE 12
                                                                                                         HEC-1 INPUT
1
                                                 ID.....1....2.....3.....4.....5.....6.....7.....8.....9.....10
                     LINE
                                                         13B-1
REFERENCED FROM 2013 MPU
0.249
3.19
0 91.6
                       424
425
426
427
428
429
                                                 KK
KM
BA
PB
LS
UD
                                                                            91.6
                                                          0.284
                                                 KK RC13B-1
KM REFERENCED FROM 2013 MPU
KM ROUTE 13B-1 TO C13B-2
KM GRIFFITH PARK DRIVE AND HUALAPAI WAY
RD 3000 0.018 0.016 0 TRA
                       430
431
432
433
434
                                                                                                                                                            50
                                                                                                                        TRAP
                                                        13B-2
REFERENCED FROM 2013 MPU
0.216
3.14
0 89.7
0.231
                       435
436
437
438
439
440
                                                  KK
KM
BA
PB
LS
UD
```

```
C13B-2
REFERENCED FROM 2013 MPU
COMBINE 13B-2 AND RC13B-1
HUALAPAI WAY AND LOCAL FACILITY
                                                       KK
KM
KM
KM
HC
                                                       KK RC13B-2

KM REFERENCED FROM 2013 MPU

KM ROUTE C13B-2 TO CCPIC-A

KM LINING = GRASS

RD 4900 0.021 0.03
                       446
447
448
449
450
                                                                                                                                                                                            6
                                                                                                                                                                        40
                                                                                                                                                TRAP
                                                                                                                                     0
                                                                19A
REFERENCED FROM 2013 MPU
0.253
3.25
0 89.9
0.351
                                                        KK
KM
BA
PB
LS
UD
                        457
458
459
460
                                                        KK
KM
KM
KM
RD
                                                                 R19A
REFERENCED FROM 2013 MPU
ROUTE 19A TO C13A-1
UNNAMED ROAD
4300 0.021 0.016
                                                                                                                                                                                           50
                                                                                                                                                                           0
                                                                                                                                      0
                                                                                                                                                 TRAP
                        461
                                                                                                                                                                                                                                                                 PAGE 13
                                                                                                                               HEC-1 INPUT
                                                         ID......1.....2.....3......4.....5......6.....7.....8.....9.....10
                      LINE
                        462
463
464
465
466
467
                                                                  13A-1
REFERENCED FROM 2013 MPU
0.224
3.19
                                                         KK
KM
BA
PB
LS
                                                                                          91.4
                                                                    0.302
                                                          UD
                                                                  C13A-1
REFERENCED FROM 2013 MPU
COMBINE 13A-1 AND R19A
TOWN CENTER DRIVE AND SWALE
2
                         468
469
470
471
472
                                                         KK RC13A-1
KM REFERENCED FROM 2013 MPU
KM ROUTE C13A-1 TO C13A-2
KM NATURAL WASH
KM TRAVEL LENGTH = 2,800
KM SLOPE = 2.1%
KM N = 0.040
KM HYDRAULIC RADIUS = 1.5
KM VELOCITY = 11.4
RM 1 0.068 0.15
                         473
474
475
476
477
478
479
480
481
482
                          483
484
485
486
487
488
                                                                   13A-2
REFERENCED FROM 2013 MPU
0.188
3.15
                                                           KK
KM
BA
PB
LS
UD
                                                                                            90.0
                                                                      0.236
                          489
490
491
492
                                                           KK
KM
KM
HC
                                                                    C13A-2
REFERENCED FROM 2013 MPU
COMBINE 13A-2 AND RC13A-1
2
                                                           KK RC13A-2
KM REFEREN
KM ROUTE (
KM LINING
                          493
494
495
                                                                    RC13A-2
REFERENCED FROM 2013 MPU
ROUTE C13A-2 TO CPIC-C
LINING = GRASS
5200 0.015 0.03
                           496
497
                                                                                                                                                                                                4
                                                                                                                                                                            40
                                                                                                                                                    TRAP
                                                            RD
                                                                    PIC-C
REFERENCED FROM 2013 MPU
0.243
3.08
                           498
499
500
501
502
503
                                                            KK
KM
BA
PB
LS
UD
                                                                                             90.4
                                                                      0.373
                                                                                                                                                                                                                                                                    PAGE 14
                                                                                                                                  HEC-1 INPUT
1
                                                             ID......1.....2.....3.....4.....5.....6.....7.....8.....9......10
                         LINE
                            504
505
506
507
                                                            KK
KM
KM
HC
                                                                     CPIC-C
REFERENCED FROM 2013 MPU
COMBINE PIC-C AND RC13A-2
                                                            KK RCPIC-C
KM REFERENCED FROM 2013 MPU
KM ROUTE CPIC-C TO CPIC-A
KM LINING = GRASS
RD 2200 0.025 0.03
                            508
509
510
511
512
                                                                                                                                          0
                                                                                                                                                     TRAP
                                                                                                                                                                            40
                                                                     PIC-A
REFERENCED FROM 2013 MPU
0.359
3.03
                            513
514
515
516
517
518
                                                             KK
KM
BA
PB
LS
                                                                                              91.1
                                                                         0.499
                                                                                                                                                       Page 7
```

```
KK
KM
KM
                                                        CPIC-A
REFERENCED FROM 2013 MPU
COMBINE RCPIC-C AND PIC-A
2
                                                  HC
                                                 KK CCPIC-A
KM REFERENCED FROM 2013 MPU
KM COMBINE CPIC-A AND RC13B-2
HC 2
                       523
524
525
526
                                                        ON18R
ONSITE BASIN ON18R
2.95
0.0289
0 82
.212
                       527
528
529
530
531
532
                                                  KK
KM
PB
BA
LS
UD
                                                         CON18R COMBINE CCPIC-A AND ON18R 2
                                                        57B-1A
OFFSITE BASIN 57B-1A
2.96
0.0443
0 85
.179
                       536
537
538
539
540
541
                                                  KK
KM
PB
BA
LS
UD
                                                                                                                                                                                                                       PAGE 15
                                                                                                           HEC-1 INPUT
1
                     LINE
                                                  ID.....1.....2.....3.....4.....5.....6.....7.....8.....9.....10
                                                 KK CCON18R
KM COMBINE 57B-1A AND CON18R
HC 2
                       542
543
544
                                                 KKRCCON18R KM ROUTE CCON18R TO CDON3 KM LENGTH SLOPE n-VALUE RD 1520 .014 .016
                                                                                                                         SHAPE
TRAP
                                                                                                                                           WIDTH
10
                                                                                                                                                          S-SLOPE
50
                                                        57B-1B

OFFSITE BASIN 57B-1B

2.91

0.0301

0 93

.150
                                                 KK
KM
PB
BA
LS
UD
                       555
556
557
                                                         CP19
COMBINE CCON18R AND 57B-1B
2
                                                        57B-1C
OFFSITE BASIN 57B-1C
2.89
0.0009
0 96
.065
                       558
559
560
561
562
563
                                                  KK
KM
PB
BA
LS
UD
                       564
565
566
                                                  KK
KM
HC
                                                         CP20
COMBINE CP19 AND 57B-1C
2
                                                         DON3
ONSITE BASIN DON3
2.91
0.0330
0 95
.097
                       567
568
569
570
571
572
                                                  KK
KM
PB
BA
LS
UD
                                                         COMBINE DON3, CP20 AND CDON2
                                                                                                           HEC-1 INPUT
                                                                                                                                                                                                                        PAGE 16
1
                     LINE
                                                  {\tt ID}.\dots.1\dots.2\dots.3\dots.4\dots.5\dots.6\dots.7\dots.8\dots.9\dots.10
                                                         RCDON3
ROUTE CDON3 TO CDON4
LENGTH SLOPE n-VALUE
1500 .003 .016
                                                  KK
KM
KM
RD
                                                                                                                                                          S-SLOPE
50
                                                                                                                         SHAPE
                                                                                                                 0
                                                                                                                           TRAP
                       580
581
582
583
584
585
                                                        DON4
ONSITE BASIN DON4
2.88
0.0272
0 95
.198
                                                  KK
KM
PB
BA
LS
UD
                                                  KK
KM
PB
BA
LS
                       586
587
588
589
590
                                                        57B-4B

OFFSITE BASIN 57B-4B

2.91

0.0110

0 96
                                                                                                                            Page 8
```

```
.071
                 591
                                       ŲD
                                             57B-4C

OFFSITE BASIN 57B-4C

2.90

0.0122

0 96

.118
                 592
593
594
595
596
597
                                       KK
KM
PB
BA
LS
UD
                                        KK C57B-4C
KM COMBINE 57B-4B AND 57B-4C
HC 2
                  598
599
600
                  601
602
603
                                        KK
KM
HC
                                              CDON4
COMBINE DON4, CDON3 AND C57B-4C
3
                                              57B-1
OFFSITE BASIN 57B-1
0.0485
2.89
                  604
605
606
607
608
609
                                        KK
KM
BA
PB
LS
UD
                                                               93.7
                                                0.173
                   610
611
612
613
614
615
                                               PIC-B
REFERENCED FROM 2013 MPU
                                         KK
KM
BA
PB
LS
UD
                                                 0.441
2.98
0
                                                               91.1
                                                                                                                                                                                   PAGE 17
                                                                                         HEC-1 INPUT
1
                                         ID.....1....2....3.....4.....5.....6.....7.....8.....9.....10
                  LINE
                                                RPIC-B
REFERENCED FROM 2013 MPU
ROUTE PIC-B TO CC57B-4
FACILITY = ANGEL PARK - PECCOLE 1
FACILITY # = APP1 0000
LINING RCP
2982 0.024 0.013 0
                    616
617
618
619
620
621
622
                                                                                                                        6
                                                                                                   CIRC
                                                57B-3
OFFSITE BASIN 57B-3
0.0481
3.06
0 89.3
                    623
624
625
626
627
628
                                          KK
KM
BA
PB
LS
UD
                                                  0.256
                                                57B-4
OFFSITE BASIN 57B-4
0.1293
2.91
0 93.8
                                           KK
KM
BA
PB
LS
UD
                                                   0.202
                                           KK
KM
HC
                                                 C57B-4
COMBINE 57B-3 AND 57B-4
2
                                           KK CC57B-4
KM COMBINE RPIC-B, 57B-1, C57B-4, AND CDON4
HC 4
                     638
639
640
                                           ZZ
  1
                             SCHEMATIC DIAGRAM OF STREAM NETWORK
    INPUT
LINE
                                                (--->) DIVERSION OR PUMP FLOW
                      (V) ROUTING
                                                       (<---) RETURN OF DIVERTED OR PUMPED FLOW
                      (.) CONNECTOR
       NO.
                          ON1
         54
                                         57B-3A
         68
                         CONI
         74
                        RCON1
         77
                                         57B-3B
          81
                                                                  on2
          87
                          CON2.....
          93
                                          57B-3D
          96
                                                                 on3R
         102
         108
```

Page 9

				,	PROPOS	ED.001				
!	508	:	. V . V . RCPIC-C	,		8				
!	513			PIC-A						
	519									
	523	. CCPIC-	·							
	527		. ON18R							
	533									
		·	. 57B-1A							
	536									
	542		V V							
	545	. RCCON18	•							
	549	:	. 57B-1B							
!	555	. CP1	9 :							
	558		. 57B-1C	:						
	564	. CP2	ò ·							
į	567	:	DON3	į.						
	573 C	CDON3V	ii							
	576 RC	DON3								
	580	DON	4							
	586	:	. 57B-4B							
į	592	:	: :	57B-4C						
į	598	•	. с57в-4С	i						
•	601 C	DON4								
6	604	57в-	1							
6	610	•	. PIC-B							
6	616		. V . RPIC-B							
(623	•	: :	57B-3						
6	629	•	: :		57B-4					
6	635		: :	С57в-4.						
		7в-4								
*		ALSO COMPUTED A	*				*		******	*
*		ROGRAPH PACKAGE JUN 1998 VERSION 4.1	*				*	HYDROLOGI 609	CORPS OF ENGINE C ENGINEERING CO SECOND STREET	ENTER *
*	RUN DATE	24FEB16 TIME	*				* *	DAVIS,	CALIFORNIA 9563 16) 756-1104	*
***	******	*******	*****				**	******	*******	*****

*		*
*	:	*
*	: THE SEVENTY :	*
*	: EHB COMPANIES :	*
*	: PROPOSED CONDITIONS :	*
*	*	*
*	: RETURN PERIOD 100 & 10 -YEAR :	*
*	: DISTRIBUTION 6-HOUR SDN3 :	*
*	: PROJECT NO 840.050 :	*
*	: FILENAME PROPOSED.H1 :	*
*	: DATE MODELED 2/22/16 : Page 12	*

```
PROPOSED.OUT
MODELED BY_ _ _ _ JAM, MMC, RRD, SHT
                                  REFERENCED HYDROLOGIC MODELS:
2013 LAS VEGAS VALLEY FLOOD CONTROL MASTER PLAN UPDATE
CITY OF LAS VEGAS CITY WIDE HYDROLOGY ANALYSIS (PBS&J 1997)
CLARK COUNTY REGIONAL FLOOD CONTROL DISTRICT 2008 MASTER PLAN UPDATE
GOWAN WATERSHED (ALL)
RECOMMENDED DRAINAGE SYSTEM WITH ULTIMATE DEVELOPMENT
INPUT FILE = ALLGOW3.DAT
INPUT FILE = ALGOW3.DAT
INPUT FILE DATE = MAY 5, 2008
DESIGN STORM = 100-YEAR 6-HR STORM
STORM DISTRIBUTION = SDN #3
MODELED BY PBS&J (MICHELE L. D'ALESSANDRO, E.I., CFM)
CHECKED BY PBS&J (HARSHAL B. DESAT, P.E., CFM)
STORM CENTERING = FULL WATERSHED
JR CARDS CONTAIN DARFS BASED ON THE FOLLOWING VALUES:
                                                                                  AREA
                                                                                                  DARF
                                                                                  AREA
SQ. MI.
0-0.5
0.5-1
1-2
2-3
3-4
4-5
5-6
6-7
                                                                                                   0.99
0.975
0.95
0.925
0.915
0.908
0.903
0.895
                                                                                  10YR
                                JR CARD RATIOS REPRESENT DEPTH-AREA REDUCTION FACTORS (DARF'S)
                                100-YEAR, 6-HOUR STORM, SDN3
              OUTPUT CONTROL VARIABLES
IPRNT 5
IPLOT 0
                                                                 PRINT CONTROL
PLOT CONTROL
HYDROGRAPH PLOT SCALE
                           IPLOT
QSCAL
                                                         0.
              HYDROGRAPH TIME DATA
                           NMIN
IDATE
ITIME
                                                                 MINUTES IN COMPUTATION INTERVAL
                                                                  STARTING DATE
STARTING TIME
NUMBER OF HYDROGRAPH ORDINATES
ENDING DATE
                                                     0000
700
0
1015
19
                         NQ
NDDATE
                         NDTIME
                                                                 ENDING TIME
CENTURY MARK
                         ICENT
                  COMPUTATION INTERVAL
TOTAL TIME BASE
                                                                  .08 HOURS
58.25 HOURS
ENGLISH UNITS
          DRAINAGE AREA
PRECIPITATION DEPTH
LENGTH, ELEVATION
FLOW
STORAGE VOLUME
SURFACE AREA
TEMPERATURE
                                                        SQUARE MILES
                                                        INCHES
                                                        CUBIC FEET PER SECOND
ACRE-FEET
ACRES
                                                        DEGREES FAHRENHEIT
           TEMPERATURE
              MULTI-PLAN OPTION
                                                            1 NUMBER OF PLANS
              MULTI-RATIO OPTION
RATIOS OF PRECIPITATION
.99 .98 .95
                                                                                                                                                                                              .57
                                                                                      .93
                                                                                                           .92
                                                                                                                                .91
                                                                                                                                                     .90
                                                                                                                                                                         .89
          PEAK FLOW AND STAGE (END-OF-PERIOD) SUMMARY FOR MULTIPLE PLAN-RATIO ECONOMIC COMPUTATIONS FLOWS IN CUBIC FEET PER SECOND, AREA IN SQUARE MILES TIME TO PEAK IN HOURS
                                                                                        RATIOS APPLIED TO PRECIPITATION
RATIO 1 RATIO 2 RATIO 3 RATIO 4 R
.99 .98 .95 .93
                                                                                                                                                                                                                           RATIO 8
                                                                                                                                                                                     RATIO 6 .91
                                                                                                                                                                   RATIO 5
                                                                                                                                                                                                       RATIO 7 .90
                                                       PLAN
             STATION
                                      AREA
                                           .04
                                                          1
                                                                                              50.
3.58
                                                                                                                  49.
3.58
                                                                                                                                     47.
3.58
                                                                                                                                                       45.
3.58
                     ON1
                                                                                              36.
3.58
                                                                                                                                                                          32.
3.58
                                                                                                                                                                                                               31.
3.58
                                           .03
               57B-3A
                                                          1
                                                                    FLOW
TIME
```

86. 3.58

86. 3.75

66. 3.58

31. 3.58

164. 3.67

26. 3.58

84. 3.58

84. 3.75

65. 3.58

30. 3.58

160. 3.67

25. 3.58

Page 13

80. 3.58

80. 3.75

62. 3.58

29. 3.58

24. 3.58

RATIO 9

14. 3.58

30

3.83

25. 3.58

11. 3.58

55. 3.75

31. 3.58

73. 3.75

56. 3.58

26. 3.58

137. 3.67

22. 3.58

74. 3.58

74. 3.75

57. 3.58

27. 3.58

139. 3.67

75. 3.58

75. 3.75

58. 3.58

27. 3.58

141. 3.67

76. 3.58

58. 3.58

143. 3.67

23. 3.58

77. 3.58

59. 3.58

28. 3.58

145. 3.67

23.

51 IO

IT

JP

JR

OPERATION

HYDROGRAPH AT

HYDROGRAPH AT

2 COMBINED AT

ROUTED TO

HYDROGRAPH AT

HYDROGRAPH AT

3 COMBINED AT

HYDROGRAPH AT

.07

.07

.05

.03

.14

.02

FLOW

TIME

FLOW TIME

FLOW

FLOW TIME

FLOW TIME

1

1

CON1

RCON1

57B-3B

ON2

CON₂

57B-3D

HYDROGRAPH AT +	on3R	.01	1	FLOW TIME	9.	9. 3.50	9. 3.50	8. 3.50	8. 3.50	8. 3.50	8. 3.50	8. 3.50	3. 3.50
3 COMBINED AT +	CON3R	.17	1	FLOW TIME	191. 3.67	187. 3.67	178. 3.67	170. 3.67	167. 3.67	165. 3.67	163. 3.67	161. 3.67	65. 3.75
HYDROGRAPH AT +	on5	.01	1	FLOW TIME	18.	18. 3.58	17. 3.58	16. 3.58	16. 3.58	16. 3.58	16. 3.58	16. 3.58	7. 3.58
HYDROGRAPH AT +	57B-3C	.01	1	FLOW TIME	11.	10. 3.58	10. 3.58	10. 3.58	9. 3.58	9. 3.58	9. 3.58	9. 3.58	4. 3.58
HYDROGRAPH AT +	on6	.00	1	FLOW TIME	8.3.50	8. 3.50	8. 3.50	7. 3.50	7. 3.50	7. 3.50	7. 3.50	7. 3.50	4. 3.50
2 COMBINED AT +	CON6	.01	1	FLOW TIME	18.	18. 3.50	17. 3.50	16. 3.50	16. 3.50	16. 3.50	16. 3.50	16. 3.50	8. 3.50
2 COMBINED AT +	CCON6	.03	1	FLOW TIME	36. 3.50	36. 3.50	34. 3.50	33. 3.50	32. 3.50	32. 3.50	32. 3.50	31. 3.50	14. 3.50
ROUTED TO +	RCCON6	.03	1	FLOW TIME	34. 3.67	33. 3.67	32. 3.67	31. 3.67	30. 3.67	30. 3.67	30. 3.67	29. 3.67	14. 3.67
HYDROGRAPH AT +	on8	.02	1	FLOW TIME	27. 3.50	26. 3.50	25. 3.50	24. 3.50	23. 3.50	23. 3.50	23. 3.50	22. 3.50	9. 3.50
2 COMBINED AT +	CON8	.04	1	FLOW TIME	54. 3.58	53. 3.58	50. 3.58	48. 3.58	47. 3.58	47. 3.58	46. 3.58	46. 3.58	19. 3.67
HYDROGRAPH AT +	SW11	.59	1	FLOW TIME	759. 3.75	743. 3.75	717. 3.75	691. 3.75	680. 3.75	673. 3.75	668. 3.75	660. 3.75	330. 3.75
ROUTED TO +	RSW11	.59	1	FLOW TIME	754. 3.75	738. 3.75	712. 3.75	686. 3.75	676. 3.75	668. 3.75	663. 3.75	655. 3.75	325. 3.75
HYDROGRAPH AT +	SW17	.36	1	FLOW TIME	479. 3.67	469. 3.67	452. 3.67	436. 3.67	429. 3.67	424. 3.67	421. 3.67	416. 3.67	205. 3.67
2 COMBINED AT +	CSW17	.94	1	FLOW TIME	1221. 3.75	1196. 3.75	1153. 3.75	1111. 3.75	1095. 3.75	1083. 3.75	1075. 3.75	1061. 3.75	530. 3.75
ROUTED TO +	RCSW17	.94	1	FLOW TIME	1211. 3.75	1186. 3.75	1143. 3.75	1101. 3.75	1083. 3.75	1073. 3.75	1063. 3.75	1051. 3.75	521. 3.75
HYDROGRAPH AT +	SW18	.41	1	FLOW TIME	519. 3.67	507. 3.67	489. 3.67	470. 3.67	463. 3.67	457. 3.67	454. 3.67	448. 3.67	215. 3.75
2 COMBINED AT +	CSW18	1.35	1	FLOW TIME	1718. 3.75	1682. 3.75	1622. 3.75	1562. 3.75	1537. 3.75	1521. 3.75	1508. 3.75	1490. 3.75	736. 3.75
ROUTED TO +	RCSW18	1.35	1	FLOW TIME	1610. 3.92	1576. 3.92	1520. 3.92	1464. 3.92	1441. 3.92	1426. 3.92	1414. 3.92	1397. 3.92	690. 3.92
HYDROGRAPH AT +	12A	.39	1	FLOW TIME	576. 3.67	565. 3.67	547. 3.67	529. 3.67	521. 3.67	516. 3.67	513. 3.67	507. 3.67	272. 3.67
2 COMBINED AT +	C12A	1.74	1	FLOW TIME	2046. 3.83	2003. 3.83	1932. 3.83	1861. 3.83	1832. 3.83	1813. 3.83	1798. 3.83	1776. 3.83	881. 3.83
ROUTED TO +	RC12A	1.74	1	FLOW TIME	2025. 3.92	1983. 3.92	1913. 3.92	1843. 3.92	1815. 3.92	1796. 3.92	1782. 3.92	1760. 3.92	880. 3.92
HYDROGRAPH AT +	12B	.26	1	FLOW TIME	387. 3.67	380. 3.67	367. 3.67	355. 3.67	350. 3.67	347. 3.67	344. 3.67	340. 3.67	182. 3.67
2 COMBINED AT +	C12B	2.00	1	FLOW TIME	2259. 3.83	2212. 3.83	2134. 3.83	2056. 3.83	2024. 3.83	2002. 3.83	1987. 3.83	1962. 3.83	990. 3.92
HYDROGRAPH AT +	57B-2A	.01	1	FLOW TIME	14.	14. 3.58	13. 3.58	13. 3.58	13. 3.58	13. 3.58	12. 3.58	12. 3.58	6. 3.58
HYDROGRAPH AT +	57B-3F	.01	1	FLOW TIME	17. 3.58	17. 3.58	16. 3.58	16. 3.58	15. 3.58	15. 3.58	15. 3.58	15. 3.58	7. 3.58
HYDROGRAPH AT +	57B-3E	.03	1	FLOW TIME	32.	31. 3.67	30. 3.67	29. 3.67	29. 3.67	28. 3.67	28. 3.67	28. 3.67	13. 3.67
HYDROGRAPH AT +	on9	.04	1	FLOW TIME	41.	40. 3.67	38. 3.67	36. 3.67	36. 3.67	35. 3.67	35. 3.67	34. 3.67	14. 3.67
5 COMBINED AT +	CON9	2.09	1	FLOW TIME	2330.	2281. 3.83 Page 14	2200. 3.83	2120. 3.83	2087. 3.83	2064. 3.83	2048. 3.83	2023. 3.83	1012. 3.92

ROUTED TO +	RCON9	2.09	1	FLOW TIME	2307. 3.92	2259. 3.92	2181. 3.92	2103. 3.92	2071. 3.92	2048. 3.92	2032. 3.92	2007. 3.92	1012. 3.92
HYDROGRAPH AT +	57B-3G	.00	1	FLOW TIME	3.50	4. 3.50	4. 3.50	4. 3.50	4. 3.50	4. 3.50	3. 3.50	3. 3.50	2. 3.50
HYDROGRAPH AT	57B-2B	.00	1	FLOW TIME	8. 3.50	7. 3.50	7. 3.50	7. 3.50	7. 3.50	7. 3.50	7. 3.50	7. 3.50	3. 3.50
HYDROGRAPH AT	57B-2C	.00	1	FLOW TIME	3.50	5. 3.50	4. 3.50	4. 3.50	4. 3.50	4. 3.50	4. 3.50	4. 3.50	2. 3.50
HYDROGRAPH AT +	ON10	.02	1	FLOW TIME	24. 3.50	23. 3.50	22. 3.50	21. 3.50	21. 3.50	21. 3.50	21. 3.50	20. 3.50	8. 3.50
5 COMBINED AT +	CON10	2.12	1	FLOW TIME	2314. 3.92	2266. 3.92	2188. 3.92	2110. 3.92	2077. 3.92	2055. 3.92	2039. 3.92	2014. 3.92	1015. 3.92
2 COMBINED AT	CCON10	2.16	1	FLOW TIME	2335. 3.92	2286. 3.92	2208. 3.92	2128. 3.92	2096. 3.92	2073. 3.92	2057. 3.92	2032. 3.92	1025. 3.92
HYDROGRAPH AT +	ON11R	.01	1	FLOW TIME	11. 3.50	11. 3.50	10. 3.50	10. 3.50	10. 3.50	9. 3.50	9. 3.50	9. 3.50	4. 3.50
2 COMBINED AT	CON11R	2.17	1	FLOW TIME	2337. 3.92	2288. 3.92	2209. 3.92	2130. 3.92	2098. 3.92	2075. 3.92	2059. 3.92	2033. 3.92	1026. 3.92
HYDROGRAPH AT +	57B-2D	.01	1	FLOW TIME	16. 3.58	15. 3.58	15. 3.58	14. 3.58	14. 3.58	14. 3.58	14. 3.58	14. 3.58	7. 3.58
HYDROGRAPH AT +	57B-2E	.02	1	FLOW TIME	42.	41. 3.50	40. 3.50	38. 3.50	38. 3.50	37. 3.50	37. 3.50	37. 3.50	19. 3.50
2 COMBINED AT	C57B-2E	.03	1	FLOW TIME	56. 3.50	55. 3.50	53. 3.50	52. 3.50	51. 3.50	50. 3.50	50. 3.50	49. 3.50	26. 3.50
HYDROGRAPH AT +	57B-2G1	.00	1	FLOW TIME	3.50	5. 3.50	5. 3.50	5. 3.50	5. 3.50	4. 3.50	4. 3.50	4. 3.50	3.50
HYDROGRAPH AT +	on12	.02	1	FLOW TIME	23. 3.58	23. 3.58	22. 3.58	21. 3.58	20. 3.58	20. 3.58	20. 3.58	20. 3.58	8. 3.58
3 COMBINED AT +	CON12	.05	1	FLOW TIME	83.	81. 3.50	78. 3.50	75. 3.50	74. 3.50	73. 3.50	73. 3.50	72. 3.50	36. 3.58
HYDROGRAPH AT +	57B-2G2	.01	1	FLOW TIME	12. 3.50	11. 3.50	11. 3.50	11. 3.50	10. 3.50	10. 3.50	10. 3.50	10. 3.50	5. 3.50
HYDROGRAPH AT +	ON13	.02	1	FLOW TIME	23. 3.58	23. 3.58	22. 3.58	21. 3.58	21. 3.58	20. 3.58	20. 3.58	20. 3.58	8. 3.58
3 COMBINED AT	CON13	.08	1	FLOW TIME	118.	115. 3.50	111. 3.50	107. 3.50	105. 3.50	104. 3.50	103. 3.50	101. 3.50	49. 3.58
HYDROGRAPH AT +	57B-2F	.09	1	FLOW TIME	147.	145. 3.58	140. 3.58	135. 3.58	133. 3.58	132. 3.58	131. 3.58	129. 3.58	69. 3.58
HYDROGRAPH AT +	57B-2H2	.02	1	FLOW TIME	21. 3.58	21. 3.58	20. 3.58	19. 3.58	19. 3.58	19. 3.58	19. 3.58	18. 3.58	9. 3.58
HYDROGRAPH AT +	ON14	.01	1	FLOW TIME	6. 3.58	5. 3.58	5. 3.58	5. 3.58	5. 3.58	5. 3.58	5. 3.58	5. 3.58	3.67
3 COMBINED AT +	CON14	.11	1	FLOW TIME	174. 3.58	171. 3.58	165. 3.58	159. 3.58	157. 3.58	155. 3.58	154. 3.58	152. 3.58	79. 3.58
ROUTED TO +	RCON14	.11	1	FLOW TIME	166. 3.67	163. 3.67	158. 3.67	156. 3.67	153. 3.67	152. 3.67	151. 3.67	146. 3.67	79. 3.67
HYDROGRAPH AT +	57B-2I	.01	1	FLOW TIME	12. 3.50	11. 3.50	11. 3.50	10. 3.50	10. 3.50	10. 3.50	10. 3.50	10. 3.50	3.50
HYDROGRAPH AT +	57в-2н1	.03	1	FLOW TIME	32. 3.75	31. 3.75	30. 3.75	29. 3.75	29. 3.75	28. 3.75	28. 3.75	28. 3.75	13. 3.75
HYDROGRAPH AT +	ON15R	.03	1	FLOW TIME	41.	40. 3.58	38. 3.58	36. 3.58	36. 3.58	35. 3.58	35. 3.58	34. 3.58	14. 3.58
5 COMBINED AT +	CON15R	.26	1	. FLOW TIME	344. 3.58	337. 3.58	324. 3.58	312. 3.58	307. 3.58	304. 3.58	301. 3.58	297. 3.58	142. 3.58
HYDROGRAPH AT +	on16R	.02	1	. FLOW TIME	23.	22. 3.50 Page 1	21. 3.50	20. 3.50	20. 3.50	20. 3.50	19. 3.50	19. 3.50	8. 3.50

						FROF OSED.	001						
2 COMBINED AT	CON16R	.28	1	FLOW TIME	364. 3.58	356. 3.58	342. 3.58	330. 3.58	325. 3.58	321. 3.58	318. 3.58	313. 3.58	149. 3.58
3 COMBINED AT	СРРН1	2.61	1	FLOW TIME	2692. 3.83	2635. 3.83	2543. 3.83	2450. 3.83	2412. 3.83	2386. 3.83	2366. 3.83	2337. 3.83	1153. 3.83
HYDROGRAPH AT	DON1	.02	1	FLOW TIME	34. 3.50	34. 3.50	33. 3.50	32. 3.50	31. 3.50	31. 3.50	31. 3.50	31. 3.50	18. 3.50
HYDROGRAPH AT	DON2	.03	1	FLOW TIME	60. 3.50	59. 3.50	57. 3.50	55. 3.50	55. 3.50	54. 3.50	54. 3.50	53. 3.50	31. 3.50
3 COMBINED AT +	CDON2	2.66	1	FLOW TIME	2720. 3.83	2663. 3.83	2570. 3.83	2476. 3.83	2438. 3.83	2412. 3.83	2392. 3.83	2363. 3.83	1169. 3.83
ROUTED TO +	RCDON2	2.66	1	FLOW TIME	2712. 3.83	2655. 3.83	2561. 3.83	2467. 3.83	2429. 3.83	2404. 3.83	2383. 3.83	2353. 3.83	1163. 3.92
HYDROGRAPH AT	13в-1	.25	1	FLOW TIME	354. 3.67	347. 3.67	336. 3.67	325. 3.67	321. 3.67	318. 3.67	315. 3.67	312. 3.67	169. 3.75
ROUTED TO +	RC13B-1	.25	1	FLOW TIME	354. 3.75	347. 3.75	336. 3.75	324. 3.75	320. 3.75	317. 3.75	314. 3.83	311. 3.83	171. 3.83
HYDROGRAPH AT	13B-2	.22	1	FLOW TIME	310. 3.67	304. 3.67	294. 3.67	283. 3.67	279. 3.67	277. 3.67	274. 3.67	271. 3.67	140. 3.67
2 COMBINED AT +	C13B-2	.47	1	FLOW TIME	634. 3.75	622. 3.75	602. 3.75	581. 3.75	573. 3.75	567. 3.75	563. 3.75	557. 3.75	294. 3.75
ROUTED TO +	RC13B-2	.47	1	FLOW TIME	641. 3.83	628. 3.83	607. 3.83	586. 3.83	578. 3.83	572. 3.83	568. 3.83	561. 3.83	295. 3.92
HYDROGRAPH AT +	19A	.25	1	FLOW TIME	318. 3.75	312. 3.75	301. 3.75	291. 3.75	287. 3.75	284. 3.75	282. 3.75	278. 3.75	144. 3.75
ROUTED TO +	R19A	.25	1	FLOW TIME	319. 3.92	313. 3.92	302. 3.92	292. 3.92	288. 3.92	285. 3.92	283. 3.92	280. 3.92	146. 3.92
HYDROGRAPH AT	13A-1	.22	1	FLOW TIME	308. 3.75	303. 3.75	293. 3.75	283. 3.75	279. 3.75	277. 3.75	275. 3.75	272. 3.75	147. 3.75
2 COMBINED AT	C13A-1	.48	1	FLOW TIME	595. 3.83	583. 3.83	564. 3.83	545. 3.83	537. 3.83	532. 3.83	528. 3.83	522. 3.83	273. 3.83
ROUTED TO +	RC13A-1	.48	1	FLOW TIME	581. 3.92	569. 2 3.92	551. 3.92	532. 3.92	524. 3.92	519. 3.92	515. 3.92	509. 3.92	268. 3.92
HYDROGRAPH AT	13A-2	.19	1	FLOW TIME	272 3.67	267. 3.67	258. 3.67	249. 3.67	246. 3.67	243. 3.67	241. 3.67	238. 3.67	124. 3.67
2 COMBINED AT	C13A-2	.66	1	FLOW TIME	782 3.8	766. 3.83	740. 3.83	715. 3.83	704. 3.83	697. 3.83	692. 3.83	684. 3.83	354. 3.83
ROUTED TO	RC13A-2	.66	1	FLOW TIME	781 3.92		738. 3.92	712. 3.92	702. 3.92	694. 3.92	689. 3.92	681. 3.92	354. 4.00
HYDROGRAPH AT	PIC-C	.24	1	FLOW TIME	280	274. 3.83	265. 3.83	256. 3.83	252. 3.83	250. 3.83	248. 3.83	245. 3.83	129. 3.83
2 COMBINED AT	CPIC-C	.91	1	FLOW TIME	1041 3.9	1020.	985. 3.92	951. 3.92	937. 3.92	927. 3.92	920. 3.92	909. 3.92	462. 3.92
ROUTED TO +	RCPIC-C	.91	1	FLOW TIME	1030 3.9	. 1009. 2 3.92	975. 3.92	940. 3.92	922. 3.92	915. 3.92	908. 3.92	896. 3.92	461. 4.00
HYDROGRAPH AT +	PIC-A	.36	1	FLOW TIME	356 3.9	. 349. 3.92	338. 3.92	326. 3.92	322. 3.92	318. 3.92	316. 3.92	312. 3.92	165. 3.92
2 COMBINED AT	CPIC-A	1.27	1	FLOW TIME	1386 3.9	. 1359. 2 3.92	1313.	1266. 3.92	1243. 3.92	1233. 3.92	1224. 3.92	1208. 3.92	625. 4.00
2 COMBINED AT	CCPIC-A	1.73	1	FLOW TIME	1997 3.9	. 1959. 2 3.92	1895.	1830. 3.92	1800. 3.92	1785. 3.92	1772. 3.92	1750. 3.92	900. 4.00
HYDROGRAPH AT +	ON18R	.03	1	FLOW TIME	28		27. 3.67	25. 3.67	25. 3.67	25. 3.67	24. 3.67	24. 3.67	10. 3.67
2 COMBINED AT	CON18R	1.76	1	FLOW TIME	2013 3.9	. 1975. 2 3.92	1910. 3.92	1844. 3.92	1814. 3.92	1799. 3.92	1786. 3.92	1763. 3.92	905. 4.00
HYDROGRAPH AT +	57B-1A	.04	1	FLOW TIME	54 3.5	53. 8 3.58 Page	51. 3.58	48. 3.58	48. 3.58	47. 3.58	47. 3.58	46. 3.58	20. 3.58
					-	rage							

					PRO	POSED.OL	П						
2 COMBINED AT	CCON18R	1.81	1	FLOW TIME	2037. 3.92	1998. 3.92	1933. 3.92	1866. 3.92	1836. 3.92	1820. 3.92	1807. 3.92	1784. 3.92	913. 4.00
ROUTED TO	RCCON18R	1.81	1	FLOW TIME	2026. 3.92	1983. 3.92	1915. 3.92	1848. 3.92	1823. 3.92	1804. 3.92	1787. 3.92	1767. 3.92	913. 4.00
HYDROGRAPH AT	57B-1B	.03	1	FLOW TIME	51. 3.58	50. 3.58	49. 3.58	47. 3.58	47. 3.58	46. 3.58	46. 3.58	45. 3.58	25. 3.58
2 COMBINED AT	CP19	1.84	1	FLOW TIME	2043. 3.92	1999. 3.92	1931. 3.92	1863. 3.92	1838. 3.92	1819. 3.92	1802. 3.92	1782. 3.92	920. 4.00
HYDROGRAPH AT	57B-1C	.00	1	FLOW TIME	3.50	2. 3.50	2. 3.50	2. 3.50	2. 3.50	3.50	3.50	3.50	1. 3.50
2 COMBINED AT	СР20	1.84	1	FLOW TIME	2043. 3.92	2000.	1932.	1864. 3.92	1839. 3.92	1819. 3.92	1802. 3.92	1782. 3.92	920. 4.00
HYDROGRAPH AT	DON3	.03	1	FLOW TIME	65. 3.50	64. 3.50	62. 3.50	60. 3.50	59. 3.50	59. 3.50	58. 3.50	58. 3.50	34. 3.50
3 COMBINED AT	CDON3	4.53	1	FLOW TIME	4694. 3.92	4597. 3.92	4440. 3.92	4283. 3.92	4221. 3.92	4177.	4141. 3.92	4092. 3.92	2057. 3.92
ROUTED TO	RCDON3	4.53	1	FLOW TIME	4670. 3.92	4572. 3.92	4412. 3.92	4253. 3.92	4186. 3.92	4135. 3.92	4103. 3.92	4063. 3.92	2046. 4.00
HYDROGRAPH AT	DON4	.03	1	FLOW TIME	44.	43. 3.58	42. 3.58	41. 3.58	40. 3.58	40. 3.58	40. 3.58	39. 3.58	23. 3.58
HYDROGRAPH AT	57B-4B	.01	1	FLOW TIME	24.	24. 3.50	23. 3.50	22. 3.50	22. 3.50	22. 3.50	22. 3.50	22. 3.50	13. 3.50
HYDROGRAPH AT	57в-4С	.01	1		23.	22. 3.50	22. 3.50	21. 3.50	21. 3.50	21. 3.50	21. 3.50	20. 3.50	12. 3.58
2 COMBINED A	C57B-4C	.02	1		47. 3.50	46. 3.50	45. 3.50	43. 3.50	43. 3.50	43. 3.50	42. 3.50	42. 3.50	25. 3.50
3 COMBINED	AT CDON4	4.58	1		4700. 3.92	4602. 3.92	4441. 3.92	4281. 3.92	4214. 3.92	4162.	4130. 3.92	4089. 3.92	2059. 4.00
HYDROGRAPH A	T 57B-1	.05	1		80.	79. 3.58	76. 3.58	74. 3.58	73. 3.58	72. 3.58	72. 3.58	71. 3.58	40. 3.58
HYDROGRAPH A	T PIC-B	.44	1	L FLOW TIME	442.	433. 3.92	419. 3.92	405. 3.92	399. 3.92	395. 3.92	392. 3.92	388. 3.92	205. 3.92
ROUTED TO	RPIC-B	.44	:	1 FLOW	439. 3.92	431. 3.92	416. 3.92	402. 3.92	396. 3.92	392. 3.92	390. 3.92	385. 3.92	202. 3.92
HYDROGRAPH A	AT 57B-3	. 05	18	1 FLOW	63. 3.67	62. 3.67		58. 3.67	57. 3.67	56. 3.67	56. 3.67	55. 3.67	28. 3.67
HYDROGRAPH /	AT 57B-4	.13		1 FLOW	202.	198	. 192. 3 3.58					179. 3.58	101. 3.58
2 COMBINED	AT C57B-4	.18	3	1 FLOW	259. 3.58	254	. 246. 8 3.67	238.	. 235. 7 3.67	233.	. 232. 7 3.67		127. 3.67
4 COMBINED	AT CC57B-4	5.25	5	1 FLOW	5310. 3.92	5200 3.9		. 4841 2 3.92			4673	4626. 3.92	2326. 4.00
1					OF KINEMA OW IS DIRE		- MUSKING F WITHOUT	TNT	ERPOLATED	TO			
	ISTAQ ELE	MENT	DT	PEAK	TIME TO PEAK	VOLUM	IE DT			E TO EAK	VOLUME		
			(MIN)	(CFS)	(MIN)	(IN)	(MIN) (CF	:s) (M	IN)	(IN)		
	FOR PLAN = 1 RCON1 MAI	NE.	.00		225.00	1.50				.00	1.50		
CONTINUITY	SUMMARY (AC	-FT) - INF	LOW=	.5242E+01 E	XCESS= .00	00E+00 O	JTFLOW= .5	5262E+01 E	BASIN STOR	AGE= .650)5E-02 PEF	CENT ERRO	R=5
	FOR PLAN = 1	RATIO=	.00		225.00	1.4				5.00	1.47		
	RCON1 MA	N F	5.00					5131E+01	BASIN STO	RAGE= .64	57E-02 PE	RCENT ERRO	R=5
	SUMMARY (AC									5.00	1.40		
	RCON1 MA	NE	5.0	0 80.35	225.00	1.4	.O J.	55 50					

```
PROPOSED.OUT

CONTINUITY SUMMARY (AC-FT) - INFLOW= .4894E+01 EXCESS= .0000E+00 OUTFLOW= .4914E+01 BASIN STORAGE= .6374E-02 PERCENT ERROR= -.5
          FOR PLAN = 1 RATIO= .00 RCON1 MANE 5.00
                                                                                             225.00
                                          77.02 225.00
                                                                  1.34
                                                                            5.00
                                                                                     77.02
CONTINUITY SUMMARY (AC-FT) - INFLOW= .4680E+01 EXCESS= .0000E+00 OUTFLOW= .4699E+01 BASIN STORAGE= .6290E-02 PERCENT ERROR= -.5
          FOR PLAN = 1 RATIO= .00
RCON1 MANE 5.00
                                                                                      75.69
                                                                                               225.00
                                           75.69
                                                   225.00
                                                                  1.32
                                                                            5.00
CONTINUITY SUMMARY (AC-FT) - INFLOW= .4594E+01 EXCESS= .0000E+00 OUTFLOW= .4613E+01 BASIN STORAGE= .6256E-02 PERCENT ERROR=
          FOR PLAN = 1 RATIO= .00 FCON1 MANE 5.00
                                                                                               225.00
                                            74.75
                                                     225.00
                                                                  1.30
                                                                            5.00
                                                                                      74.75
CONTINUITY SUMMARY (AC-FT) - INFLOW= .4535E+01 EXCESS= .0000E+00 OUTFLOW= .4553E+01 BASIN STORAGE= .6232E-02 PERCENT ERROR=
          FOR PLAN = 1 RATIO= .00
RCON1 MANE 5.00
                                                                                               225.00
                                            74.08
                                                   225.00
                                                                  1.29
                                                                            5.00
                                                                                      74.08
CONTINUITY SUMMARY (AC-FT) - INFLOW= .4492E+01 EXCESS= .0000E+00 OUTFLOW= .4511E+01 BASIN STORAGE= .6038E-02 PERCENT ERROR=
           FOR PLAN = 1 RATIO= .00
RCON1 MANE 5.00
                                                                                                225.00
                                                                                      73.00
                                                                            5.00
                                            73.00
                                                   225.00
                                                                  1.27
CONTINUITY SUMMARY (AC-FT) - INFLOW= .4425E+01 EXCESS= .0000E+00 OUTFLOW= .4442E+01 BASIN STORAGE= .6011E-02 PERCENT ERROR=
           FOR PLAN = 1 RATIO= .00
RCON1 MANE 4.00
                                                                                                230.00
                                                                                      30.06
                                                                            5.00
                                            31.17
                                                    228.00
                                                                   .55
CONTINUITY SUMMARY (AC-FT) - INFLOW= .1896E+01 EXCESS= .0000E+00 OUTFLOW= .1909E+01 BASIN STORAGE= .5556E-02 PERCENT ERROR= -1.0
           FOR PLAN = 1 RATIO= .00
RCCON6 MANE 4.25
                                                                                      33.88
                                                                                                220.00
                                            34.85
                                                     216.75
                                                                  1.61
                                                                             5.00
CONTINUITY SUMMARY (AC-FT) - INFLOW= .2157E+01 EXCESS= .0000E+00 OUTFLOW= .2162E+01 BASIN STORAGE= .2734E-02 PERCENT ERROR= -.3
           FOR PLAN = 1 RATIO= .00
RCCON6 MANE 4.25
                                                                                                220.00
                                                                  1.58
                                                                             5.00
                                                                                       33.16
                                            34.03 216.75
CONTINUITY SUMMARY (AC-FT) - INFLOW= .2106E+01 EXCESS= .0000E+00 OUTFLOW= .2111E+01 BASIN STORAGE= .2708E-02 PERCENT ERROR=
           FOR PLAN = 1 RATIO= .00
RCCON6 MANE 4.25
                                                                             5.00
                                                                                       31.96
                                                                                                220.00
                                                                  1.51
                                            32.67
                                                     216.75
 CONTINUITY SUMMARY (AC-FT) - INFLOW= .2022E+01 EXCESS= .0000E+00 OUTFLOW= .2026E+01 BASIN STORAGE= .2664E-02 PERCENT ERROR=
           FOR PLAN = 1 RATIO= .00
RCCON6 MANE 4.25
                                                                                                220.00
                                                                             5.00
                                                                                       30.75
                                            31.31 216.75
                                                                  1.45
 CONTINUITY SUMMARY (AC-FT) - INFLOW= .1938E+01 EXCESS= .0000E+00 OUTFLOW= .1942E+01 BASIN STORAGE= .2619E-02 PERCENT ERROR=
           FOR PLAN = 1 RATIO= .00
RCCON6 MANE 4.25
                                                                                       30.27
                                                                                                220.00
                                            30.77
                                                      216.75
                                                                  1.43
                                                                             5.00
 CONTINUITY SUMMARY (AC-FT) - INFLOW= .1905E+01 EXCESS= .0000E+00 OUTFLOW= .1909E+01 BASIN STORAGE= .2601E-02 PERCENT ERROR=
            FOR PLAN = 1 RATIO= .00
RCCON6 MANE 4.25
                                                                   1.41
                                             30.39
                                                      216.75
                                                                             5.00
                                                                                       29.93
                                                                                                220.00
 CONTINUITY SUMMARY (AC-FT) - INFLOW= .1881E+01 EXCESS= .0000E+00 OUTFLOW= .1886E+01 BASIN STORAGE= .2588E-02 PERCENT ERROR=
            FOR PLAN = 1 RATIO= .00
RCCON6 MANE 4.25
                                             30.11
                                                      216.75
                                                                   1.40
                                                                             5.00
                                                                                       29.69
                                                                                                220.00
 CONTINUITY SUMMARY (AC-FT) - INFLOW= .1865E+01 EXCESS= .0000E+00 OUTFLOW= .1869E+01 BASIN STORAGE= .2579E-02 PERCENT ERROR=
            FOR PLAN = 1 RATIO= .00
RCCON6 MANE 4.25
                                                                                                220.00
                                                                                                               1.37
                                             29.68
                                                      216.75
                                                                   1.38
                                                                              5.00
                                                                                       29.30
 CONTINUITY SUMMARY (AC-FT) - INFLOW= .1838E+01 EXCESS= .0000E+00 OUTFLOW= .1842E+01 BASIN STORAGE= .2564E-02 PERCENT ERROR=
            FOR PLAN = 1 RATIO= .00
RCCON6 MANE 3.75
                                             14.36
                                                    221.25
                                                                    .63
                                                                              5.00
                                                                                       14.02
                                                                                                220.00
 CONTINUITY SUMMARY (AC-FT) - INFLOW= .8405E+00 EXCESS= .0000E+00 OUTFLOW= .8424E+00 BASIN STORAGE= .2039E-02 PERCENT ERROR= -.5
            FOR PLAN = 1 RATIO= .00 RSW11 MANE 1.02
                                                                              5.00 753.82 225.00
                                                                                                               2.08
                                            755.16
                                                    226.24
                                                                   2.08
```

```
PROPOSED.OUT
CONTINUITY SUMMARY (AC-FT) - INFLOW= .6522E+02 EXCESS= .0000E+00 OUTFLOW= .6522E+02 BASIN STORAGE= .1654E-02 PERCENT ERROR=
          FOR PLAN = 1 RATIO= .00
RSW11 MANE 1.03 740.95 226.07
                                                           2.03 5.00 738.42 225.00
CONTINUITY SUMMARY (AC-FT) - INFLOW= .6380E+02 EXCESS= .0000E+00 OUTFLOW= .6381E+02 BASIN STORAGE= .1696E-02 PERCENT ERROR=
                                                                                                                                .0
          FOR PLAN = 1 RATIO= .00
RSW11 MANE 1.05 714.15 226.19
                                                                         5.00 712.14 225.00
                                                            1.96
CONTINUITY SUMMARY (AC-FT) - INFLOW= .6145E+02 EXCESS= .0000E+00 OUTFLOW= .6145E+02 BASIN STORAGE= .1622E-02 PERCENT ERROR=
                                                                                                                                .0
          FOR PLAN = 1 RATIO= .00
RSW11 MANE 1.06 686.99 226.38
                                                               1.88
                                                                         5.00 685.95
                                                                                         225.00
CONTINUITY SUMMARY (AC-FT) - INFLOW= .5911E+02 EXCESS= .0000E+00 OUTFLOW= .5911E+02 BASIN STORAGE= .1763E-02 PERCENT ERROR=
                                                                                                                                .0
           FOR PLAN = 1 RATIO= .00
RSW11 MANE 1.07
                                                                         5.00 675.73 225.00
                                                                1.85
                                         677.33
                                                  225.62
CONTINUITY SUMMARY (AC-FT) - INFLOW= .5818E+02 EXCESS= .0000E+00 OUTFLOW= .5818E+02 BASIN STORAGE= .1832E-02 PERCENT ERROR=
                                                                                                                                 .0
           FOR PLAN = 1 RATIO= .00
RSW11 MANE 1.07
                                                                                668.38
                                                                                          225.00
                                          669.72 225.52
                                                                1.83
                                                                          5.00
 CONTINUITY SUMMARY (AC-FT) - INFLOW= .5752E+02 EXCESS= .0000E+00 OUTFLOW= .5752E+02 BASIN STORAGE= .1613E-02 PERCENT ERROR=
                                                                                                                                 .0
           FOR PLAN = 1 RATIO= .00
RSW11 MANE 1.08
                                                                                          225.00
                                                                          5.00
                                                                                663.31
                                                                1.82
                                        665.29
                                                  226.22
 CONTINUITY SUMMARY (AC-FT) - INFLOW= .5706E+02 EXCESS= .0000E+00 OUTFLOW= .5706E+02 BASIN STORAGE= .1791E-02 PERCENT ERROR=
                                                                                                                                 .0
           FOR PLAN = 1 RATIO= .00
RSW11 MANE 1.08 656.69
                                                                                654.91 225.00
                                                                1.79
                                                                          5.00
                                                    226.27
 CONTINUITY SUMMARY (AC-FT) - INFLOW= .5631E+02 EXCESS= .0000E+00 OUTFLOW= .5632E+02 BASIN STORAGE= .1761E-02 PERCENT ERROR=
                                                                                                                                  .0
           FOR PLAN = 1 RATIO= .00
RSW11 MANE 1.43 328.10 225.73
                                                                                          225.00
                                                                          5.00 324.89
                                                                  .88
 CONTINUITY SUMMARY (AC-FT) - INFLOW= .2754E+02 EXCESS= .0000E+00 OUTFLOW= .2754E+02 BASIN STORAGE= .1787E-02 PERCENT ERROR=
                                                                                                                                  .0
           FOR PLAN = 1 RATIO= .00
RCSW17 MANE 1.65 1211.98 225.57
                                                                          5.00 1210.68 225.00
                                                                 2.06
 CONTINUITY SUMMARY (AC-FT) - INFLOW= .1040E+03 EXCESS= .0000E+00 OUTFLOW= .1040E+03 BASIN STORAGE= .3928E-02 PERCENT ERROR=
                                                                                                                                  .0
           FOR PLAN = 1 RATIO= .00
RCSW17 MANE 1.66 1187.90 225.78
                                                                          5.00 1185.71 225.00
                                                                 2.02
  CONTINUITY SUMMARY (AC-FT) - INFLOW= .1018E+03 EXCESS= .0000E+00 OUTFLOW= .1018E+03 BASIN STORAGE= .3507E-02 PERCENT ERROR=
                                                                                                                                  .0
            FOR PLAN = 1 RATIO= .00
RCSW17 MANE 1.68 1144.91
                                                                           5.00 1143.40 225.00
                                                   225.68
                                                                 1.94
  CONTINUITY SUMMARY (AC-FT) - INFLOW= .9799E+02 EXCESS= .0000E+00 OUTFLOW= .9800E+02 BASIN STORAGE= .3522E-02 PERCENT ERROR=
            FOR PLAN = 1 RATIO= .00
RCSW17 MANE 1.71 1102.37 225.64
                                                                                           225.00
                                                                           5.00 1101.22
                                                                 1.87
  CONTINUITY SUMMARY (AC-FT) - INFLOW= .9424E+02 EXCESS= .0000E+00 OUTFLOW= .9424E+02 BASIN STORAGE= .3477E-02 PERCENT ERROR=
            FOR PLAN = 1 RATIO= .00
RCSW17 MANE 1.72 1087.77
                                                                            5.00 1083.30
                                                   227.00
                                                                  1.84
  CONTINUITY SUMMARY (AC-FT) - INFLOW= .9278E+02 EXCESS= .0000E+00 OUTFLOW= .9279E+02 BASIN STORAGE= .3927E-02 PERCENT ERROR=
            FOR PLAN = 1 RATIO= .00
RCSW17 MANE 1.73 1077.08
                                                                           5.00 1072.79 225.00
                                                                  1.82
                                                   226.26
  CONTINUITY SUMMARY (AC-FT) - INFLOW= .9172E+02 EXCESS= .0000E+00 OUTFLOW= .9173E+02 BASIN STORAGE= .3817E-02 PERCENT ERROR=
             FOR PLAN = 1 RATIO= .00
RCSW17 MANE 1.73 1069.06
                                                                            5.00 1062.80 225.00
                                                                  1.81
                                                      226.95
  CONTINUITY SUMMARY (AC-FT) - INFLOW= .9100E+02 EXCESS= .0000E+00 OUTFLOW= .9101E+02 BASIN STORAGE= .3937E-02 PERCENT ERROR=
             FOR PLAN = 1 RATIO= .00
RCSW17 MANE 1.74 1055.75 226.36
                                                                  1.78 5.00 1050.97 225.00
```

CONTINUITY SUMMA	RY (AC-FT) -	INFLOW= .	.8979E+02 I	EXCESS= .0000	PROPOSED.O E+00 OUTFLO		E+02 BASIN	STORAGE=	.3511E-02	PERCENT	ERROR=	.0
	AN = 1 RATIO 17 MANE)= .00 2.30	524.06	227.64	. 87	5.00	520.91	225.00	.87			
CONTINUITY SUMMA	RY (AC-FT) -	INFLOW= .	.4386E+02 I	EXCESS= .0000	E+00 OUTFLO	DW= .4387	E+02 BASIN	STORAGE=	.3897E-02	PERCENT	ERROR=	.0
	AN = 1 RATIO N9 MANE	0= .00 1.67	2325.51	231.44	2.07	5.00	2306.80	235.00	2.07			
CONTINUITY SUMMA	RY (AC-FT) -	INFLOW= .	.2301E+03 I	EXCESS= .0000	E+00 OUTFLO	DW= .2301	LE+03 BASIN	STORAGE=	.3123E-02	PERCENT	ERROR=	.0
	AN = 1 RATIO N9 MANE)= .00 1.68	2279.65	231.56	2.02	5.00	2258.94	235.00	2.02			
CONTINUITY SUMMA	RY (AC-FT) -	INFLOW= .	.2252E+03 I	EXCESS= .0000	E+00 OUTFLO	OW= .2252	E+03 BASIN	STORAGE=	.2858E-02	PERCENT	ERROR=	.0
	AN = 1 RATIO N9 MANE)= .00 1.70	2197.90	232.94	1.95	5.00	2181.01	235.00	1.95			
CONTINUITY SUMMA	RY (AC-FT) -	INFLOW= .	.2170E+03 I	EXCESS= .0000	E+00 OUTFLO	OW= .2170	E+03 BASIN	STORAGE=	.2984E-02	PERCENT	ERROR=	.0
	AN = 1 RATIO N9 MANE)= .00 1.72	2118.94	232.70	1.87	5.00	2102.63	235.00	1.88			
CONTINUITY SUMMA	RY (AC-FT) -	INFLOW= .	.2088E+03 I	EXCESS= .0000	E+00 OUTFLO	DW= .2088	BE+03 BASIN	STORAGE=	.3195E-02	PERCENT	ERROR=	.0
	AN = 1 RATIO N9 MANE)= .00 1.73	2088.03	232.28	1.85	5.00	2070.54	235.00	1.85			
CONTINUITY SUMMA	RY (AC-FT) -	INFLOW= .	.2056E+03 I	EXCESS= .0000	E+00 OUTFLO	OW= .2056	SE+03 BASIN	STORAGE=	.2784E-02 I	PERCENT	ERROR=	.0
	AN = 1 RATIO N9 MANE)= .00 1.74	2062.77	233.22	1.83	5.00	2047.86	235.00	1.83			
CONTINUITY SUMMA	RY (AC-FT) -	INFLOW= .	.2033E+03 I	EXCESS= .0000	E+00 OUTFLO	OW= .2033	BE+03 BASIN	STORAGE=	.2736E-02	PERCENT	ERROR=	.0
	AN = 1 RATIO N9 MANE)= .00 1.75	2050.03	232.14	1.81	5.00	2032.41	235.00	1.81			
CONTINUITY SUMMA	RY (AC-FT) -	INFLOW= .	.2017E+03 I	EXCESS= .0000	E+00 OUTFLO	OW= .2017	E+03 BASIN	STORAGE=	.2832E-02	PERCENT	ERROR=	.0
	AN = 1 RATIO N9 MANE)= .00 1.75	2021.32	233.22	1.79	5.00	2006.95	235.00	1.79			
CONTINUITY SUMMA	RY (AC-FT) -	INFLOW= .	.1991E+03	EXCESS= .0000	E+00 OUTFLO	OW= .1991	LE+03 BASIN	STORAGE=	.2680E-02 I	PERCENT	ERROR=	.0
	AN = 1 RATIO N9 MANE)= .00 2.26	1012.15	235.03	.89	5.00	1012.06	235.00	.89			
CONTINUITY SUMMA	RY (AC-FT) -	INFLOW= .	.9869E+02	EXCESS= .0000	E+00 OUTFLO	OW= .9869	0E+02 BASIN	STORAGE=	.3005E-02	PERCENT	ERROR=	.0
	AN = 1 RATIO 14 MANE)= .00 4.25	167.38	221.00	1.99	5.00	166.33	220.00	1.99			
CONTINUITY SUMMA			.1179E+02	EXCESS= .0000	E+00 OUTFLO	OW= .1181	LE+02 BASIN	STORAGE=	.2635E-02 I	PERCENT	ERROR=	1
	AN = 1 RATIO 14 MANE)= .00 4.25	164.16	221.00	1.95	5.00	163.07	220.00	1.95			
CONTINUITY SUMMA			.1155E+02	EXCESS= .0000	E+00 OUTFLO	OW= .1156	E+02 BASIN	STORAGE=	.2609E-02 I	PERCENT	ERROR=	1
	AN = 1 RATIO 14 MANE	0= .00 4.25	158.77	221.00	1.88	5.00	157.63	220.00	1.88			
CONTINUITY SUMMA	781		.1114E+02	EXCESS= .0000	E+00 OUTFLO	OW= .1115	E+02 BASIN	STORAGE=	.2565E-02 I	PERCENT	ERROR=	1
	AN = 1 RATIO 14 MANE	0= .00 4.00	155.50	220.00	1.81	5.00	155.50	220.00	1.81			
CONTINUITY SUMMA			.1074E+02	EXCESS= .0000	E+00 OUTFLO	DW= .1075	E+02 BASIN	STORAGE=	.2457E-02 I	PERCENT	ERROR=	1
	AN = 1 RATIO 14 MANE	0= .00 4.00	153.27	220.00	1.78	5.00	153.27	220.00	1.79			
CONTINUITY SUMMA			.1057E+02	EXCESS= .0000	E+00 OUTFLO	DW= .1059	E+02 BASIN	STORAGE=	.2440E-02 I	PERCENT	ERROR=	1
	AN = 1 RATIO 14 MANE	0= .00 4.00	151.72	220.00	1.77	5.00	151.72	220.00	1.77			

CONTINUITY SUMMARY	(AC-FT) - IN	FLOW= .1	L046E+02 E	XCESS= .00	PROPOSED.(00E+00 OUTFL	OUT OW= .1047E	E+02 BASIN	STORAGE=	.2427E-02 PEF	RCENT ERROF	R=1
FOR PLAN : RCON14	= 1 RATIO=	.00	150.60	220.00	1.75	5.00	150.60	220.00	1.75		
CONTINUITY SUMMARY							E+02 BASIN	STORAGE=	.2418E-02 PER	RCENT ERROF	R=1
FOR PLAN	= 1 RATIO=	.00						220.00	1.73		
RCON14 CONTINUITY SUMMARY		4.25	146.92	221.00	1.73	5.00 ow= 1025	145.67 =+02 BASTN			RCENT ERROI	R=1
	(AC-FI) - IN = 1 RATIO=	.00	10242402 2	.vc233vv	002100 00112						
RCON14	MANE	5.00	78.65	220.00	.88	5.00	78.65	220.00	.88	DCENT EDDO	R=2
CONTINUITY SUMMARY			5186E+01 E	EXCESS= .00	000E+00 00TFL	.OW= .51941	E+UI BASIN	STORAGE=	.2404E-02 FE	RCEIVI EIGIO	
RCDON2		.81	2715.41	230.47	1.99	5.00	2711.59	230.00	1.99		
CONTINUITY SUMMARY	(AC-FT) - IN	NFLOW= .2	2819E+03 E	EXCESS= .00	00E+00 OUTF	_OW= .2819	E+03 BASIN	STORAGE=	.2945E-03 PE	RCENT ERRO	R= .0
FOR PLAN RCDON2	= 1 RATIO= MANE	.00 .81	2659.57	230.89	1.94	5.00	2655.45	230.00	1.94		
CONTINUITY SUMMARY	(AC-FT) - IN	NFLOW= .	2758E+03 I	EXCESS= .00	000E+00 OUTF	LOW= .2758	E+03 BASIN	STORAGE=	.3285E-03 PE	RCENT ERRO	R= .0
FOR PLAN RCDON2		.00	2565.17	230.51	1.87	5.00	2560.89	230.00	1.87		
CONTINUITY SUMMARY	(AC-FT) - IN	NFLOW= .	2656E+03	EXCESS= .00	000E+00 OUTF	LOW= .2656	E+03 BASIN	STORAGE=	.3058E-03 PE	RCENT ERRO	R= .0
FOR PLAN RCDON2	= 1 RATIO= MANE	.00	2471.39	231.01	1.80	5.00	2467.47	230.00	1.80		
CONTINUITY SUMMARY	(AC-FT) - II	NFLOW= .	2556E+03	EXCESS= .00	000E+00 OUTF	LOW= .2556	E+03 BASIN	STORAGE=	.2937E-03 PE	RCENT ERRO	OR= .0
FOR PLAN RCDON2	= 1 RATIO=	.00	2432.44	231.09	1.77	5.00	2428.86	230.00	1.77		
CONTINUITY SUMMARY		NFLOW= .	2516E+03	EXCESS= .0	000E+00 OUTF	LOW= .2516	SE+03 BASIN	STORAGE=	.2918E-03 PE	ERCENT ERRO	OR= .0
FOR PLAN	= 1 RATIO=	.00	2408.58		81 = 21	5.00	2403.63	230.00	1.75		
RCDON2 CONTINUITY SUMMARY		.83						STORAGE=	.3212E-03 PE	ERCENT ERRO	OR= .0
FOR PLAN	= 1 RATIO=							230.00	1.74		
RCDON2 CONTINUITY SUMMARY		.84	2387.66			5.00	2382.98 7F±03 RASTN			ERCENT ERRO	OR= .0
	= 1 RATIO=		. 240/E+03	EXCESS= .0	0002400 0011	LOW2107	2103 5/1321				
RCDON2	MANE	.84				5.00	2353.39	230.00	1.72	EDCENT FOR	OR= .0
CONTINUITY SUMMARY			.2435E+03	EXCESS= .0	000E+00 OUTF	FLOW= .243!	SE+03 BASIN	STORAGE=	: .3233E-U3 P	ERCENT ERRO	JR= .0
RCDON2		1.00				5.00	1162.81	235.00	.84		
CONTINUITY SUMMARY	(AC-FT) - I	[NFLOW= .	.1196E+03	EXCESS= .0	000E+00 OUT	FLOW= .119	6E+03 BASIN	N STORAGE=	: .3200E-03 P	ERCENT ERR	OR= .0
FOR PLAN RC13B-1	= 1 RATIO= MANE	= .00 5.00	353.60	225.00	2.27	5.00	353.60	225.00	2.27		
CONTINUITY SUMMARY	(AC-FT) - I	ENFLOW=	.3020E+02	EXCESS= .0	0000E+00 OUT	FLOW= .302	1E+02 BASI	N STORAGE=	= .1566E-02 P	ERCENT ERR	OR=1
FOR PLAN RC13B-1	= 1 RATIO= MANE	= .00 5.00	346.83	3 225.00	2.23	5.00	346.83	225.00	2.23		
CONTINUITY SUMMARY	(AC-FT) - 1	INFLOW=	.2960E+02	EXCESS= .(0000E+00 OUT	FLOW= .296	1E+02 BASI	N STORAGE:	= .1548E-02 P	ERCENT ERR	OR=1
FOR PLAN RC13B-1	I = 1 RATIO= . MANE	= .00 5.00	335.5	4 225.00	0 2.15	5.00	335.54	225.00	2.15		
CONTINUITY SUMMARY		INFLOW=	.2860E+02	EXCESS= .(0000E+00 OUT	FLOW= .286	1E+02 BASI	N STORAGE:	= .1518E-02 P	'ERCENT ERR	OR=1
FOR PLAN RC13B-1	N = 1 RATIO	= .00 5.00	324.2	5 225.00	0 2.08	5.00	324.25	225.00	2.08		

```
PROPOSED.OUT
CONTINUITY SUMMARY (AC-FT) - INFLOW= .2760E+02 EXCESS= .0000E+00 OUTFLOW= .2762E+02 BASIN STORAGE= .1489E-02 PERCENT ERROR= -.1
          FOR PLAN = 1 RATIO= .00 RC13B-1 MANE 5.00
                                       319.73 225.00
                                                                2.05
                                                                        5.00 319.73 225.00
CONTINUITY SUMMARY (AC-FT) - INFLOW= .2721E+02 EXCESS= .0000E+00 OUTFLOW= .2722E+02 BASIN STORAGE= .1476E-02 PERCENT ERROR=
          FOR PLAN = 1 RATIO= .00
RC13B-1 MANE 5.00
                                                                          5.00
                                                                                316.57
                                                                                            225.00
                                       316.57
                                                   225.00
                                                                2.03
CONTINUITY SUMMARY (AC-FT) - INFLOW= .2693E+02 EXCESS= .0000E+00 OUTFLOW= .2694E+02 BASIN STORAGE= .1468E-02 PERCENT ERROR=
          FOR PLAN = 1 RATIO= .00 RC13B-1 MANE 5.00
                                                                                           230.00
                                       314.32 230.00
                                                                2.01
                                                                          5.00
                                                                                314.32
CONTINUITY SUMMARY (AC-FT) - INFLOW= .2673E+02 EXCESS= .0000E+00 OUTFLOW= .2675E+02 BASIN STORAGE= .1462E-02 PERCENT ERROR=
          FOR PLAN = 1 RATIO= .00
RC13B-1 MANE 5.00 310.89
                                                                                           230.00
                                                                1.99
                                                                          5.00
                                                                                310.89
                                                  230.00
CONTINUITY SUMMARY (AC-FT) - INFLOW= .2641E+02 EXCESS= .0000E+00 OUTFLOW= .2643E+02 BASIN STORAGE= .1452E-02 PERCENT ERROR=
          FOR PLAN = 1 RATIO= .00
RC13B-1 MANE 5.00 171.06
                                                                           5.00 171.06
                                                                                           230.00
                                                  230.00
                                                                 1.05
CONTINUITY SUMMARY (AC-FT) - INFLOW= .1391E+02 EXCESS= .0000E+00 OUTFLOW= .1392E+02 BASIN STORAGE= .1716E-02 PERCENT ERROR=
           FOR PLAN = 1 RATIO= .00
RC13B-2 MANE 5.00 640.80
                                                                                   640.80
                                                                                           230.00
                                                    230.00
                                                                 2.18
                                                                           5.00
CONTINUITY SUMMARY (AC-FT) - INFLOW= .5392E+02 EXCESS= .0000E+00 OUTFLOW= .5398E+02 BASIN STORAGE= .5817E-02 PERCENT ERROR=
           FOR PLAN = 1 RATIO= .00
RC13B-2 MANE 5.00 628.20
                                                                           5.00 628.20 230.00
                                                    230.00
                                                                 2.13
CONTINUITY SUMMARY (AC-FT) - INFLOW= .5282E+02 EXCESS= .0000E+00 OUTFLOW= .5288E+02 BASIN STORAGE= .5767E-02 PERCENT ERROR=
           FOR PLAN = 1 RATIO= .00
RC13B-2 MANE 5.00 607.17
                                                                                   607.17 230.00
                                                                 2.06
                                                                           5.00
                                                    230.00
CONTINUITY SUMMARY (AC-FT) - INFLOW= .5100E+02 EXCESS= .0000E+00 OUTFLOW= .5105E+02 BASIN STORAGE= .5683E-02 PERCENT ERROR=
           FOR PLAN = 1 RATIO= .00
RC13B-2 MANE 5.00 586.10
                                                                                   586.10 230.00
                                                    230.00
                                                                 1.99
                                                                           5.00
 CONTINUITY SUMMARY (AC-FT) - INFLOW= .4918E+02 EXCESS= .0000E+00 OUTFLOW= .4923E+02 BASIN STORAGE= .5597E-02 PERCENT ERROR=
           FOR PLAN = 1 RATIO= .00
RC13B-2 MANE 5.00 578.31
                                                                                  578.31 230.00
                                                   230.00
                                                                 1.96
                                                                           5.00
 CONTINUITY SUMMARY (AC-FT) - INFLOW= .4845E+02 EXCESS= .0000E+00 OUTFLOW= .4850E+02 BASIN STORAGE= .7165E-02 PERCENT ERROR=
           FOR PLAN = 1 RATIO= .00
RC13B-2 MANE 5.00 572.39
                                                                 1.94
                                                                           5.00
                                                                                  572.39
                                                     230.00
 CONTINUITY SUMMARY (AC-FT) - INFLOW= .4794E+02 EXCESS= .0000E+00 OUTFLOW= .4799E+02 BASIN STORAGE= .7136E-02 PERCENT ERROR=
           FOR PLAN = 1 RATIO= .00
RC13B-2 MANE 5.00 568.15
                                                                                  568.15
                                                     230.00
                                                                 1.92
                                                                            5.00
 CONTINUITY SUMMARY (AC-FT) - INFLOW= .4758E+02 EXCESS= .0000E+00 OUTFLOW= .4763E+02 BASIN STORAGE= .7115E-02 PERCENT ERROR= -.1
           FOR PLAN = 1 RATIO= .00
RC13B-2 MANE 5.00 561.38
                                                                            5.00
                                                                                  561.38
                                                                                            230.00
                                                     230.00
                                                                 1.90
 CONTINUITY SUMMARY (AC-FT) - INFLOW= .4700E+02 EXCESS= .0000E+00 OUTFLOW= .4705E+02 BASIN STORAGE= .6748E-02 PERCENT ERROR=
           FOR PLAN = 1 RATIO= .00
RC13B-2 MANE 5.00 295.27
                                                                            5.00
                                                                                  295.27
                                                                                            235.00
                                                    235.00
                                                                  .98
 CONTINUITY SUMMARY (AC-FT) - INFLOW= .2427E+02 EXCESS= .0000E+00 OUTFLOW= .2430E+02 BASIN STORAGE= .7210E-02 PERCENT ERROR=
           FOR PLAN = 1 RATIO= .00
R19A MANE 5.00 318.89
                                                    235.00
                                                                 2.18
                                                                            5.00
                                                                                  318.89
                                                                                            235.00
 CONTINUITY SUMMARY (AC-FT) - INFLOW= .2936E+02 EXCESS= .0000E+00 OUTFLOW= .2938E+02 BASIN STORAGE= .2006E-02 PERCENT ERROR= -.1
           FOR PLAN = 1 RATIO= .00
R19A MANE 5.00 312.72
                                                                  2.13
                                                                            5.00 312.72 235.00
                                                                                                            2.13
                                                     235.00
```

```
PROPOSED.OUT
CONTINUITY SUMMARY (AC-FT) - INFLOW= .2875E+02 EXCESS= .0000E+00 OUTFLOW= .2877E+02 BASIN STORAGE= .1983E-02 PERCENT ERROR= -.1
         FOR PLAN = 1 RATIO= .00
R19A MANE 5.00 302.45 235.00
                                                          2.06 5.00 302.45 235.00
CONTINUITY SUMMARY (AC-FT) - INFLOW= .2774E+02 EXCESS= .0000E+00 OUTFLOW= .2776E+02 BASIN STORAGE= .1945E-02 PERCENT ERROR= -.1
          FOR PLAN = 1 RATIO= .00
R19A MANE 5.00 292.17 235.00
                                                                      5.00 292.17 235.00
                                                          1.98
CONTINUITY SUMMARY (AC-FT) - INFLOW= .2673E+02 EXCESS= .0000E+00 OUTFLOW= .2675E+02 BASIN STORAGE= .1906E-02 PERCENT ERROR= -.1
          FOR PLAN = 1 RATIO= .00
R19A MANE 5.00
                                       288.05
                                                235.00
                                                             1.95
                                                                       5.00 288.05 235.00
CONTINUITY SUMMARY (AC-FT) - INFLOW= .2633E+02 EXCESS= .0000E+00 OUTFLOW= .2635E+02 BASIN STORAGE= .1891E-02 PERCENT ERROR= -.1
          285.17
                                               235.00
                                                             1.93
                                                                       5.00 285.17 235.00
CONTINUITY SUMMARY (AC-FT) - INFLOW= .2605E+02 EXCESS= .0000E+00 OUTFLOW= .2606E+02 BASIN STORAGE= .1880E-02 PERCENT ERROR= -.1
          283.11
                                                  235.00
                                                             1.92
                                                                       5.00
                                                                             283.11
CONTINUITY SUMMARY (AC-FT) - INFLOW= .2585E+02 EXCESS= .0000E+00 OUTFLOW= .2586E+02 BASIN STORAGE= .1872E-02 PERCENT ERROR=
          FOR PLAN = 1 RATIO= .00 F19A MANE 5.00
                                       279.82
                                                  235.00
                                                              1.89
                                                                       5.00
CONTINUITY SUMMARY (AC-FT) - INFLOW= .2553E+02 EXCESS= .0000E+00 OUTFLOW= .2554E+02 BASIN STORAGE= .1860E-02 PERCENT ERROR= -.1
          FOR PLAN = 1 RATIO= .00 F19A MANE 5.00
                                       146.43
                                                  235.00
                                                              .96
                                                                       5.00
                                                                             146.43
                                                                                         235.00
CONTINUITY SUMMARY (AC-FT) - INFLOW= .1300E+02 EXCESS= .0000E+00 OUTFLOW= .1300E+02 BASIN STORAGE= .2023E-02 PERCENT ERROR=
          FOR PLAN = 1 RATIO= .00
RC13A-2 MANE 5.00 780.51 235.00
                                                                       5.00
                                                                             780.51
                                                                                       235.00
                                                              2.18
CONTINUITY SUMMARY (AC-FT) - INFLOW= .7731E+02 EXCESS= .0000E+00 OUTFLOW= .7736E+02 BASIN STORAGE= .8795E-02 PERCENT ERROR= -.1
          FOR PLAN = 1 RATIO= .00
RC13A-2 MANE 5.00 764.75 235.00
                                                              2.14
                                                                       5.00 764.75 235.00
CONTINUITY SUMMARY (AC-FT) - INFLOW= .7572E+02 EXCESS= .0000E+00 OUTFLOW= .7577E+02 BASIN STORAGE= .8721E-02 PERCENT ERROR= -.1
          FOR PLAN = 1 RATIO= .00
RC13A-2 MANE 5.00 738.48 235.00
                                                              2.06
                                                                       5.00
                                                                             738.48
CONTINUITY SUMMARY (AC-FT) - INFLOW= .7309E+02 EXCESS= .0000E+00 OUTFLOW= .7314E+02 BASIN STORAGE= .8303E-02 PERCENT ERROR= -.1
          FOR PLAN = 1 RATIO= .00
RC13A-2 MANE 5.00
                                                                       5.00 712.20 235.00
                                      712.20
                                                235.00
                                                              1.99
 CONTINUITY SUMMARY (AC-FT) - INFLOW= .7047E+02 EXCESS= .0000E+00 OUTFLOW= .7051E+02 BASIN STORAGE= .8180E-02 PERCENT ERROR= -.1
          FOR PLAN = 1 RATIO= .00
RC13A-2 MANE 5.00
                                       701.68 235.00
                                                              1.96
                                                                       5.00
                                                                              701.68
                                                                                       235.00
 CONTINUITY SUMMARY (AC-FT) - INFLOW= .6942E+02 EXCESS= .0000E+00 OUTFLOW= .6947E+02 BASIN STORAGE= .8130E-02 PERCENT ERROR= -.1
           FOR PLAN = 1 RATIO= .00
RC13A-2 MANE 5.00 694.32
                                                235.00
                                                              1.94
                                                                       5.00
                                                                             694.32
                                                                                       235.00
 CONTINUITY SUMMARY (AC-FT) - INFLOW= .6869E+02 EXCESS= .0000E+00 OUTFLOW= .6873E+02 BASIN STORAGE= .8095E-02 PERCENT ERROR= -.1
           FOR PLAN = 1 RATIO= .00 RC13A-2 MANE 5.00
                                      689.06
                                                  235.00
                                                              1.92
                                                                        5.00
                                                                               689.06
 CONTINUITY SUMMARY (AC-FT) - INFLOW= .6817E+02 EXCESS= .0000E+00 OUTFLOW= .6821E+02 BASIN STORAGE= .7878E-02 PERCENT ERROR= -.1
           FOR PLAN = 1 RATIO= .00
RC13A-2 MANE 5.00 680.64
                                                  235.00
                                                              1.90
                                                                        5.00
                                                                                680.64
                                                                                          235.00
 CONTINUITY SUMMARY (AC-FT) - INFLOW= .6733E+02 EXCESS= .0000E+00 OUTFLOW= .6738E+02 BASIN STORAGE= .7838E-02 PERCENT ERROR= -.1
           FOR PLAN = 1 RATIO= .00
RC13A-2 MANE 5.00 353.55 240.00
                                                               . 98
                                                                        5.00 353.55 240.00
                                                                                                      .98
```

CONTINUITY SUMMARY (AC-	-FT) - INFLOW= .	3459E+02 EXCESS=		SED.OUT OUTFLOW= .346	2E+02 BASIN	STORAGE=	.6811E-02 PERCENT	ERROR=	1
FOR PLAN = 1 RCPIC-C MAN		1036.21 237	.50 2.1	5 5.00	1029.58	235.00	2.15		
CONTINUITY SUMMARY (AC-	-FT) - INFLOW= .	1041E+03 EXCESS=	.0000E+00 0	UTFLOW= .104	1E+03 BASIN	STORAGE=	.2599E-02 PERCENT	ERROR=	.0
FOR PLAN = 1 RCPIC-C MAN		1018.48 236	.21 2.1	1 5.00	1009.34	235.00	2.11		
CONTINUITY SUMMARY (AC-	-FT) - INFLOW= .	1020E+03 EXCESS=	.0000E+00 O	UTFLOW= .102	OE+03 BASIN	STORAGE=	.2441E-02 PERCENT	ERROR=	.0
FOR PLAN = 1 RCPIC-C MAN		983.10 236	.05 2.0	3 5.00	975.10	235.00	2.03		
CONTINUITY SUMMARY (AC-	-FT) - INFLOW= .	9842E+02 EXCESS=	.0000E+00 O	UTFLOW= .984	3E+02 BASIN	STORAGE=	.3029E-02 PERCENT	ERROR=	.0
FOR PLAN = 1 RCPIC-C MAN		947.55 235	.94 1.9	6 5.00	940.20	235.00	1.96		
CONTINUITY SUMMARY (AC-	-FT) - INFLOW= .	9487E+02 EXCESS=	.0000E+00 O	UTFLOW= .948	8E+02 BASIN	STORAGE=	.2774E-02 PERCENT	ERROR=	.0
FOR PLAN = 1 RCPIC-C MAN		935.30 237	.12 1.9	3 5.00	921.65	235.00	1.93		
CONTINUITY SUMMARY (AC-	-FT) - INFLOW= .	9346E+02 EXCESS=	.0000E+00 O	UTFLOW= .934	7E+02 BASIN	STORAGE=	.2840E-02 PERCENT	ERROR=	.0
FOR PLAN = 1 RCPIC-C MAN		923.69 237	.96 1.9	1 5.00	914.93	235.00	1.91		
CONTINUITY SUMMARY (AC-	-FT) - INFLOW= .	9247E+02 EXCESS=	.0000E+00 O	UTFLOW= .924	8E+02 BASIN	STORAGE=	.2450E-02 PERCENT	ERROR=	.0
FOR PLAN = 1 RCPIC-C MAN		912.75 235	.55 1.9	0 5.00	907.94	235.00	1.89		
CONTINUITY SUMMARY (AC-	-FT) - INFLOW= .	9176E+02 EXCESS=	.0000E+00 0	UTFLOW= .917	7E+02 BASIN	STORAGE=	.2737E-02 PERCENT	ERROR=	.0
FOR PLAN = 1 RCPIC-C MAN		906.65 236	.52 1.8	7 5.00	895.54	235.00	1.87		
CONTINUITY SUMMARY (AC-	-FT) - INFLOW= .	9064E+02 EXCESS=	.0000E+00 O	UTFLOW= .906	4E+02 BASIN	STORAGE=	.3045E-02 PERCENT	ERROR=	.0
FOR PLAN = 1 RCPIC-C MAN		462.80 240	.43 .9	6 5.00	461.30	240.00	.96		
CONTINUITY SUMMARY (AC-	-FT) - INFLOW= .	4647E+02 EXCESS=	.0000E+00 O	UTFLOW= .464	8E+02 BASIN	STORAGE=	.2735E-02 PERCENT	ERROR=	.0
FOR PLAN = 1 RCCON18R MAN		2025.98 234	.81 2.1	1 5.00	2025.84	235.00	2.11		
CONTINUITY SUMMARY (AC-	-FT) - INFLOW= .	2035E+03 EXCESS=	.0000E+00 O	UTFLOW= .203	5E+03 BASIN	STORAGE=	.9016E-03 PERCENT	ERROR=	.0
FOR PLAN = 1 RCCON18R MAN		1985.99 233	.85 2.0	7 5.00	1982.70	235.00	2.07		
CONTINUITY SUMMARY (AC-	FT) - INFLOW= .	1994E+03 EXCESS=	.0000E+00 0	UTFLOW= .1994	4E+03 BASIN	STORAGE=	.8716E-03 PERCENT	ERROR=	.0
FOR PLAN = 1 RCCON18R MAN		1916.18 233	.69 2.0	0 5.00	1915.28	235.00	2.00		
CONTINUITY SUMMARY (AC-	FT) - INFLOW= .	1924E+03 EXCESS=	.0000E+00 O	UTFLOW= .192	4E+03 BASIN	STORAGE=	.7622E-03 PERCENT	ERROR=	.0
FOR PLAN = 1 RCCON18R MAN		1850.58 237	.90 1.9	3 5.00	1847.74	235.00	1.93		
CONTINUITY SUMMARY (AC-	FT) - INFLOW= .	1855E+03 EXCESS=	.0000E+00 O	UTFLOW= .185	5E+03 BASIN	STORAGE=	.7102E-03 PERCENT	ERROR=	.0
FOR PLAN = 1 RCCON18R MAN		1823.83 234	.59 1.9	0 5.00	1823.05	235.00	1.90		
CONTINUITY SUMMARY (AC-	FT) - INFLOW= .	1827E+03 EXCESS=	.0000E+00 O	UTFLOW= .182	7E+03 BASIN	STORAGE=	.9152E-03 PERCENT	ERROR=	.0
FOR PLAN = 1 RCCON18R MAN		1809.04 237	.24 1.8	8 5.00	1803.87	235.00	1.88		
CONTINUITY SUMMARY (AC-	FT) - INFLOW= .	1807E+03 EXCESS=	.0000E+00 O	UTFLOW= .180	7E+03 BASIN	STORAGE=	.8510E-03 PERCENT	ERROR=	.0
FOR PLAN = 1 RCCON18R MAN		1793.44 237	.68 1.8	6 5.00	1786.79	235.00	1.86		

PROPOSED.OUT

CO	NTINUITY SUMMARY	′ (AC-FT) - IN	NFLOW= .	1794E+03	EXCESS=	.0000E+00	POSED.OUT OUTFLOW:	- = .1794	E+03 BASIN	STORAGE=	.9037E-03 PERCENT	ERROR=	.0
	FOR PLAN	N = 1 RATIO= R MANE	.00 2.17	1768.17	234.	.09 1	84	5.00	1766.93	235.00	1.84		
CO	NTINUITY SUMMARY	(AC-FT) - IN	NFLOW= .	1772E+03	EXCESS=	.0000E+00	OUTFLOW:	= .1772	E+03 BASIN	STORAGE=	.7374E-03 PERCENT	ERROR=	.0
	FOR PLAN	N = 1 RATIO= R MANE	.00 2.57	914.14	241.	.11	.94	5.00	913.08	240.00	.94		
CO	NTINUITY SUMMARY	(AC-FT) - IN	NFLOW= .	.9071E+02	EXCESS=	.0000E+00	OUTFLOW:	= .9071	LE+02 BASIN	STORAGE=	.7244E-03 PERCENT	ERROR=	.0
		N = 1 RATIO= 3 MANE	.00 2.99	4683.42	2 236	.06 2	.04	5.00	4670.40	235.00	2.04		
CO	NTINUITY SUMMARY	(AC-FT) - IN	NFLOW= .	.4932E+03	EXCESS=	.0000E+00) OUTFLOW:	= .4932	2E+03 BASIN	STORAGE=	.1358E-02 PERCENT	ERROR=	.0
		N = 1 RATIO= 3 MANE	.00 3.00	4574.67	237	.31 2	2.00	5.00	4572.21	235.00	2.00		
co	NTINUITY SUMMARY	(AC-FT) - IN	NFLOW= .	.4827E+03	EXCESS=	.0000E+00) OUTFLOW	= .4826	SE+03 BASIN	STORAGE=	.1409E-02 PERCENT	ERROR=	.0
		N = 1 RATIO= 3 MANE	.00	4426.78	3 236	. 38 1	93	5.00	4412.02	235.00	1.93		
co	NTINUITY SUMMARY	(AC-FT) - IN	NFLOW= .	.4654E+03	EXCESS=	.0000E+00) OUTFLOW	= .4653	BE+03 BASIN	STORAGE=	.1506E-02 PERCENT	ERROR=	.0
		N = 1 RATIO= 3 MANE	.00 3.06	4264.36	5 235	.48 1	85	5.00	4253.14	235.00	1.85		
CC	NTINUITY SUMMARY	(AC-FT) - IN	NFLOW= .	.4481E+03	EXCESS=	.0000E+00) OUTFLOW	= .4481	LE+03 BASIN	STORAGE=	.1258E-02 PERCENT	ERROR=	.0
		N = 1 RATIO= 3 MANE	.00 3.07	4204.50	236	.34 1	83	5.00	4186.33	235.00	1.83		
CC	ONTINUITY SUMMARY	(AC-FT) - IN	NFLOW= .	.4412E+03	EXCESS=	.0000E+00) OUTFLOW	= .4412	2E+03 BASIN	STORAGE=	.1350E-02 PERCENT	ERROR=	.0
		N = 1 RATIO= 3 MANE	.00 3.08	4155.53	3 236	.97 1	81	5.00	4135.11	235.00	1.81		
CC	ONTINUITY SUMMARY	(AC-FT) - IN	NFLOW= .	. 4364E+03	EXCESS=	.0000E+00) OUTFLOW	= .4364	1E+03 BASIN	STORAGE=	.1751E-02 PERCENT	ERROR=	.0
		N = 1 RATIO= 3 MANE	.00 3.08	4118.34	237	.49 1	79	5.00	4102.70	235.00	1.79		
CC	ONTINUITY SUMMARY	(AC-FT) - IN	NFLOW= .	.4330E+03	EXCESS=	.0000E+00) OUTFLOW	= .4329	9E+03 BASIN	STORAGE=	.1394E-02 PERCENT	ERROR=	.0
		N = 1 RATIO= 3 MANE	.00 3.09	4065.99	235	.11 1	L.77	5.00	4062.61	235.00	1.77		
CC	ONTINUITY SUMMARY	(AC-FT) - IN	NFLOW= .	. 4274E+03	EXCESS=	.0000E+00) OUTFLOW	= .4274	1E+03 BASIN	STORAGE=	.1741E-02 PERCENT	ERROR=	.0
		N = 1 RATIO= 3 MANE	.00 3.68	2050.84	239	.21	.89	5.00	2046.31	240.00	.89		
CC	ONTINUITY SUMMARY	(AC-FT) - IN	NFLOW= .	.2140E+03	EXCESS=	.0000E+00) OUTFLOW	= .2140	E+03 BASIN	STORAGE=	.1324E-02 PERCENT	ERROR=	.0
		N = 1 RATIO= B MANE	.00 1.74	439.87	7 237	. 27 2	2.03	5.00	439.01	235.00	2.03		
CC	ONTINUITY SUMMARY	(AC-FT) - IN	NFLOW= .	.4783E+02	EXCESS=	.0000E+00) OUTFLOW	= .4783	BE+02 BASIN	STORAGE=	.2578E-03 PERCENT	ERROR=	.0
		N = 1 RATIO= B MANE	.00 1.75	432.13	3 236	.45 1	L.99	5.00	430.53	235.00	1.99		
cc	ONTINUITY SUMMARY	(AC-FT) - IN	NFLOW= .	.4685E+02	EXCESS=	.0000E+00) OUTFLOW	= .4685	5E+02 BASIN	STORAGE=	.2499E-03 PERCENT	ERROR=	.0
		N = 1 RATIO= B MANE	.00 1.76	417.58	3 236	.27 1	L.92	5.00	416.38	235.00	1.92		
cc	ONTINUITY SUMMARY	((AC-FT) - IN	NFLOW= .	. 4522E+02	EXCESS=	.0000E+00) OUTFLOW	= .4522	2E+02 BASIN	STORAGE=	.2493E-03 PERCENT	ERROR=	.0
		N = 1 RATIO= B MANE	.00 1.78	403.10	236	.14 1	L.85	5.00	402.16	235.00	1.85		
cc	ONTINUITY SUMMARY	Y (AC-FT) - IN	NFLOW= .	.4360E+02	EXCESS=	.0000E+00) OUTFLOW	= .4360	E+02 BASIN	STORAGE=	.2464E-03 PERCENT	ERROR=	.0
		N = 1 RATIO= B MANE	.00 1.78	398.34	1 236	.81 1	L.83	5.00	396.16	235.00	1.83		
							25						

CONTINUITY SUMM	ARY (AC-FT) - INI	FLOW= .429	6E+02 EXCE	PR SS= .0000E+	ROPOSED.OUT 00 OUTFLOW:	= .4296E-	+02 BASIN	STORAGE=	.2533E-03 PERCENT	ERROR=	.0
	AN = 1 RATIO= C-B MANE	.00 1.78	393.51	237.29	1.81	5.00	392.22	235.00	1.81		
CONTINUITY SUMM	ARY (AC-FT) - IN	FLOW= .425	S1E+02 EXCE	:SS= .0000E+	00 OUTFLOW	= .4250E-	+02 BASIN	STORAGE=	.2248E-03 PERCENT	ERROR=	.0
	LAN = 1 RATIO= C-B MANE	.00 1.79	390.10	235.85	1.79	5.00	389.58	235.00	1.79		
CONTINUITY SUMM	ARY (AC-FT) - IN	FLOW= .421	18E+02 EXCE	ESS= .0000E+	-00 OUTFLOW	= .4218E	+02 BASIN	STORAGE=	.2523E-03 PERCENT	ERROR=	.0
	LAN = 1 RATIO= C-B MANE	.00 1.79	386.39	236.40	1.77	5.00	385.05	235.00	1.77		
CONTINUITY SUMM	ARY (AC-FT) - IN	FLOW= .41	67E+02 EXC	ESS= .0000E+	+00 OUTFLOW	⊫ .4167E	+02 BASIN	STORAGE=	.2662E-03 PERCENT	ERROR=	.0
	LAN = 1 RATIO= C-B MANE	.00 2.03	203.87	238.08	.91	5.00	202.47	235.00	.91		
CONTINUITY SUMM	MARY (AC-FT) - IN	IFLOW= .21	43E+02 EXC	ESS= .0000E-	+00 OUTFLOV	√= .2143E	E+02 BASIN	STORAGE=	.2507E-03 PERCENT	ERROR=	.0

*** NORMAL END OF HEC-1 ***

LEGEND

REFERENCED STUDY NO.

	SUMMARY OF REFERENCED STUDIES
REFERENCE STUDY NO.	PROJECT TITLE
#1	TECHNICAL DRAINAGE STUDY FOR PECCOLE RANCH GOLF COURSE (PHASE II) (DS 1347)
#2	TECHNICAL DRAINAGE STUDY FOR PECCOLE WEST COMMERCIAL CENTER (DS 2364)
#3	TECHNICAL DRAINAGE STUDY FOR RAMPART BOULEVARD (DS 2696)
#4	TECHNICAL DRAINAGE STUDY UPDATE FOR PECCOLE RANCH GOLF COURSE MAINTENANCE YARD (DS 1626)
#5	HYDROLOGY STUDY UPDATE FOR QUEENSRIDGE FAIRWAY HOMES (DS 2307)
#6	TECHNICAL DRAINAGE STUDY PECCOLE WEST LOT 9 (PHASE II) (DS 1630)
#7	TECHNICAL DRAINAGE STUDY FOR PECCOLE WEST LOT 12 (DS 1650)
#8	TECHNICAL DRAINAGE STUDY FOR VILLAGE 12 HUALAPAI WAY IMPROVEMENTS (DS 1853)
#9	TECHNICAL DRAINAGE STUDY FOR HUALAPAI WAY ROUGH GRADING, ALTA DRIVE TO CHARLESTON BOULEVARD (DS 1758,
#10	TECHNICAL DRAINAGE STUDY FOR PECCOLE WESTLOT 11 (DS 1753)
#11	TECHNICAL DRAINAGE STUDY FOR PECCOLE RANCH PARCEL 19 & 20 (DS 2172)
#12	TECHNICAL DRAINAGE STUDY FOR SAN MICHELLE WEST (DS 2226)
#13	TECHNICAL DRAINAGE STUDY FOR PECCOLE – LOT 10 PARCEL 18 (DS 2203)
#14	TECHNICAL DRAINAGE STUDY FOR WINDSOR AT QUEENSRIDGE (DS 3279)
#15	TECHNICAL DRAINAGE STUDY FOR CLUB HOUSE (DS 1555)
#16	TECHNICAL DRAINAGE STUDY FOR THE VERSAILLES (DS 2236)
#17	MASTER DRAINAGE STUDY FOR PECCOLE RANCH – PHASE II (DS 1140)
#18	TECHNICAL DRAINAGE STUDY FOR BADLANDS HOLE 9 (DS 1974)
#19	TECHNICAL DRAINAGE STUDY FOR PECCOLE WEST BUSINESS CENTER (DS 1856)
#20	TECHNICAL DRAINAGE STUDY FOR PECCOLE WEST LOT 12 (PARK AREA) (DS 1929)
#21	TECHNICAL DRAINAGE STUDY FOR ONE QUEENSRIDGE PLACE (CONDO TOWERS) – UPDATE 2 (DS 3746)
#22	TECHNICAL DRAINAGE STUDY FOR APPLE DRIVE AT PECCOLE RANCH (DS 1576)
#23	TECHNICAL DRAINAGE STUDY FOR ALTA DRIVE AT PECCOLE RANCH (DS 1588)
#24	TECHNICAL DRAINAGE STUDY FOR PECCOLE RANCH PHASE II MASTER PLAN (DS 273)
#25	CONCEPTUAL DRAINAGE STUDY FOR PECCOLE RANCH PHASE II MASTER PLAN (DS 1273)

THE SEVENTY
REFERENCED STUDIES

DRAWING

EXHA

OF SHT

APPENDIX B

Hydraulic Calculations and Information

Section A

Flow "Q"	44	cfs	OUTPUT:			
Manning's "n"	0.025		Velocity 2.9	1	ft/sec	
Slope (%)	0.65		Depth 0.5	54	ft	
Bottom Width	24.0	ft	Freeboard 0.6	3	ft	
Side Slope (Lt)	9.5 I	H:1V	Total Depth 1.1	7	ft	
Side Slope (Rt)	5.0 l	H:1V	Froude No. 0.7	' 5	ft	
Radius	0.0	ft	Superelevation 0.0	0	ft	

Normal depth calculations using Manning's equation $Fb = 1 + 0.025 Vd^{\wedge}(1/3) \ Supercritical; \ 0.5 + V^{\wedge}2/2g \ Subcritical$

Section B

Flow "Q"	44	cfs	OUTPUT:		
Manning's "n"	0.025		Velocity 2	.97	ft/sec
Slope (%)	1.20		Depth 0	.33	ft
Bottom Width	42.0	ft	Freeboard 0	.64	ft
Side Slope (Lt)	9.0	H:1V	Total Depth 0	.97	ft
Side Slope (Rt)	9.0	H:1V	Froude No. 0	.94	ft
Radius	0.0	ft	Superelevation 0	.00	ft

Normal depth calculations using Manning's equation $Fb = 1 + 0.025 Vd^{(1/3)} \ Supercritical; \ 0.5 + V^{2/2}g \ Subcritical$

Section C

Flow "Q"	59 cfs	OUTPUT:		
Manning's "n"	0.040	Velocity	4.21	ft/sec
Slope (%)	5.85	Depth	0.33	ft
Bottom Width	42.0 ft	Freeboard	1.07	ft
Side Slope (Lt)	3.0 H:1V	Total Depth	1.40	ft
Side Slope (Rt)	2.0 H:1V	Froude No.	1.30	ft
Radius	0.0 ft	Superelevation	0.00	ft

Normal depth calculations using Manning's equation $Fb = 1 + 0.025 Vd^{\wedge}(1/3) \ Supercritical; \ 0.5 + V^{\wedge}2/2g \ Subcritical$

RIPRAP CHANNEL

Section C

Flow "Q"	59 cfs	OUTPUT:	
Manning's "n"	0.034	Velocity	4.65 ft/s
Slope (%)	5.85	Depth	0.30 ft
Bottom Width	42.0 ft	Freeboard	1.08 ft
Side Slope (Lt)	3.0 H:1V	Total Depth	1.38 ft
Side Slope (Rt)	2.0 H:1V	Froude No.	1.51
Specific Gravity	2.5	Riprap Size D50	4.9 in

Section D

Flow "Q"	59 c	ofs	OUTPUT:		
Manning's "n"	0.040		Velocity	3.81	ft/sec
Slope (%)	4.28		Depth	0.36	ft
Bottom Width	42.0 ft	t	Freeboard	1.07	ft
Side Slope (Lt)	3.0 H:	:1V	Total Depth	1.43	ft
Side Slope (Rt)	3.0 H:	:1V	Froude No.	1.13	ft
Radius	0.0 ft	t	Superelevation	0.00	ft

Normal depth calculations using Manning's equation

 $Fb = 1+0.025Vd^{(1/3)}$ Supercritical; 0.5+V^2/2g Subcritical

RIPRAP CHANNEL

Section D

Flow "Q"	59 cfs	OUTPUT:	
Manning's "n"	0.033	Velocity	4.29 ft/s
Slope (%)	4.28	Depth	0.32 ft
Bottom Width	42.0 ft	Freeboard	1.07 ft
Side Slope (Lt)	3.0 H:1V	Total Depth	1.39 ft
Side Slope (Rt)	3.0 H:1V	Froude No.	1.35
Specific Gravity	2.50	Riprap Size D50	3.8 in

Section E

Flow "Q"	60 cfs	OUTPUT:		
Manning's "n"	0.025	Velocity	3.60	ft/sec
Slope (%)	0.50	Depth	1.08	ft
Bottom Width	10.0 ft	Freeboard	0.70	ft
Side Slope (Lt)	2.0 H:1	Total Depth	1.78	ft
Side Slope (Rt)	8.0 H:1	Froude No.	0.71	ft
Radius	0.0 ft	Superelevation	0.00	ft

Normal depth calculations using Manning's equation $Fb = 1 + 0.025 Vd^{(1/3)} \ Supercritical; \ 0.5 + V^{2/2}g \ Subcritical$

Section F

Flow "Q"	60	cfs	оитрит:	
Manning's "n"	0.025		Velocity 4.6	4 ft/sec
Slope (%)	0.73		Depth 1.0	7 ft
Bottom Width	10.0	ft	Freeboard 0.8	3 ft
Side Slope (Lt)	2.0 l	H:1V	Total Depth 1.9) ft
Side Slope (Rt)	2.0 l	H:1V	Froude No. 0.8	6 ft
Radius	0.0	ft	Superelevation 0.0) ft

Normal depth calculations using Manning's equation $Fb = 1 + 0.025 Vd^{(1/3)} \ Supercritical; \ 0.5 + V^2/2g \ Subcritical$

Section G

Flow "Q"	34 cfs	OUTPUT:	
Manning's "n"	0.025	Velocity	3.55 ft/sec
Slope (%)	0.61	Depth	0.80 ft
Bottom Width	10.0 ft	Freeboard	0.70 ft
Side Slope (Lt)	2.0 H:1V	Total Depth	1.50 ft
Side Slope (Rt)	3.0 H:1V	Froude No.	0.76 ft
Radius	0.0 ft	Superelevation	0.00 ft

Normal depth calculations using Manning's equation $Fb = 1 + 0.025 Vd^{(1/3)} \ Supercritical; \ 0.5 + V^{2/2}g \ Subcritical$

Section H (north half)

Flow "Q"	33	cfs	OUTPUT:		
Manning's "n"	0.040		Velocity 3.	95	ft/sec
Slope (%)	6.15		Depth 0.	56	ft
Bottom Width	0.0	ft	Freeboard 1.	80	ft
Side Slope (Lt)	3.0	H:1V	Total Depth 1.	64	ft
Side Slope (Rt)	50.0	H:1V	Froude No. 1.	32	ft
Radius	0.0	ft	Superelevation 0.	00	ft

Normal depth calculations using Manning's equation $Fb = 1 + 0.025 Vd^{(1/3)} \ Supercritical; \ 0.5 + V^{2/2}g \ Subcritical$

RIPRAP CHANNEL

Section H (north half)

Flow "Q"	33 cfs	OUTPUT:	
Manning's "n"	0.034	Velocity	4.46 ft/s
Slope (%)	6.15	Depth	0.53 ft
Bottom Width	0.0 ft	Freeboard	1.09 ft
Side Slope (Lt)	3.0 H:1V	Total Depth	1.62 ft
Side Slope (Rt)	50.0 H:1V	Froude No.	1.53
Specific Gravity	2.50	Riprap Size D50	4.7 in

Section H (south half)

Flow "Q"	33	cfs	OUTPUT:		
Manning's "n"	0.040		Velocity	3.97	ft/sec
Slope (%)	6.15		Depth (0.57	ft
Bottom Width	0.0	ft	Freeboard	1.08	ft
Side Slope (Lt)	2.0	H:1V	Total Depth	1.65	ft
Side Slope (Rt)	50.0	H:1V	Froude No.	1.31	ft
Radius	0.0	ft	Superelevation (0.00	ft

Normal depth calculations using Manning's equation $Fb = 1 + 0.025 Vd^{(1/3)} \ Supercritical; \ 0.5 + V^{2/2}g \ Subcritical$

RIPRAP CHANNEL

Section H (south half)

Flow "Q"	33 cfs	OUTPUT:	
Manning's "n"	0.034	Velocity	4.48 ft/s
Slope (%)	6.15	Depth	0.53 ft
Bottom Width	0.0 ft	Freeboard	1.09 ft
Side Slope (Lt)	2.0 H:1V	Total Depth	1.62 ft
Side Slope (Rt)	50.0 H:1V	Froude No.	1.53
Specific Gravity	2.50	Diauan 0: DE0	47:-
		Riprap Size D50	4.7 in

Worksheet for	Facility	25 -	54-inch	RCP
----------------------	----------	------	---------	-----

Friction Method Manning Formula Solve For Full Flow Diameter Input Data Roughness Coefficient 0.013 Channel Slope 2.70 % Normal Depth 3.69 ft Discharge 191.00 Ft³s Results Test State St	Project Description			
Roughness Coefficient	Friction Method	Manning Formula		
Roughness Coefficient	Solve For	Full Flow Diameter		
Channel Slope 2.70 % Normal Depth 3.69 ft Diameter 3.69 ft Discharge 191.00 ft*/s Results Diameter 3.69 ft Normal Depth 3.69 ft Flow Area 10.72 ft* Wetted Perimeter 11.61 ft Hydraulic Radius 0.92 ft Top Width 0.00 ft Critical Depth 3.62 ft Percent Full 10.00 % Critical Slope 0.02411 ft/ft Velocity 17.81 ft/s Velocity Head 4.93 ft Specific Energy 8.63 ft Froude Number 0.00 ft/s Slope Full 0.02700 ft/ft Slope Full 0.02700 ft/ft Flow Type SubCritical ft GVF Input Data Upstream Depth 0.00	Input Data			
Normal Depth 3.69 ft Diameter 3.69 ft Discharge 191.00 ft*/s Results Diameter 3.69 ft Normal Depth 3.69 ft Flow Area 10.72 ft² Wetted Perimeter 11.61 ft Hydraulic Radius 0.92 ft Top Wridth 0.00 ft Critical Depth 3.62 ft Percent Full 10.00 % Critical Slope 0.02411 ft/ft Velocity 17.81 ft/s Velocity Head 4.93 ft Specific Energy 8.63 ft Froude Number 0.00 ft/s Maximum Discharge 20.41 ft/s Slope Full 0.02700 ft/ft Flow Type SubCritical ft/s GVF Input Data Downstream Depth 0.00 ft Length 0.00	Roughness Coefficient		0.013	
Diameter 191.00 17/5 Results	Channel Slope		2.70	%
Discharge 191.00	Normal Depth		3.69	ft
Diameter	Diameter		3.69	ft
Diameter 3.69 ft Normal Depth 3.69 ft Flow Area 10.72 ft² Wetted Perimeter 11.61 ft Hydraulic Radius 0.92 ft Top Width 0.00 ft Critical Depth 3.62 ft Percent Full 100.0 % Critical Slope 0.02411 ft/ft Velocity 17.81 ft/s Velocity Head 4.93 ft Specific Energy 8.63 ft Froude Number 0.00 Maximum Discharge 205.46 ft/s Discharge Full 191.00 ft/s Slope Full 0.02700 ft Flow Type SubCritical GVF Input Data CGVF Output Data Upstream Depth 0.00 ft Profile Description Profile Descrip	Discharge		191.00	ft³/s
Normal Depth 3.69 ft Flow Area 10.72 ft² Wetted Perimeter 11.61 ft Hydraulic Radius 0.92 ft Top Width 0.00 ft Critical Depth 3.62 ft Percent Full 100.0 % Critical Slope 0.02411 ft/ft Velocity 17.81 ft/s Velocity Head 4.93 ft Specific Energy 8.63 ft Froude Number 0.00 ft/s Discharge Full 191.00 ft/s Slope Full 0.02700 ft/ft Flow Type SubCritical ft/s GVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 ft GVF Output Data Upstream Depth 0.00 ft Frought 0.00 ft Type SubCritical <td>Results</td> <td></td> <td></td> <td></td>	Results			
Flow Area	Diameter		3.69	ft
Flow Area	Normal Depth		3.69	ft
Hydraulic Radius 0.92 ft	Flow Area		10.72	ft²
Top Width 0.00 ft Critical Depth 3.62 ft Percent Full 100.0 % Critical Slope 0.02411 ft/ft Velocity 17.81 ft/s Velocity 17.81 ft/s Velocity Head 4.93 ft Specific Energy 8.63 ft Froude Number 0.00 Maximum Discharge 205.46 ft²/s Discharge Full 191.00 ft²/s Slope Full 9.002700 ft/ft Flow Type SubCritical GVF Input Data Downstream Depth 0.00 ft Length 0.000 ft Unmber Of Steps 0 ft² GVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.000 ft	Wetted Perimeter		11.61	ft
Critical Depth 3.62 ft Percent Full 100.0 % Critical Slope 0.02411 ft/ft Velocity 17.81 ft/s Velocity Head 4.93 ft Specific Energy 8.63 ft Froude Number 0.00 ft³/s Discharge Full 191.00 ft²/s Slope Full 0.02700 ft/ft Flow Type SubCritical The state of	Hydraulic Radius		0.92	ft
Percent Full 100.0 % Critical Slope 0.02411 ft/ft Velocity 17.81 ft/s Velocity Head 4.93 ft Specific Energy 8.63 ft Froude Number 0.00 ft/s Maximum Discharge 205.46 ft/s Discharge Full 191.00 ft/ft Flow Type SubCritical ft/ft GVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 ft GVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft	Top Width		0.00	ft
Critical Slope 0.02411 ft/ft Velocity 17.81 ft/s Velocity Head 4.93 ft Specific Energy 8.63 ft Froude Number 0.00 ft²/s Maximum Discharge 205.46 ft²/s Discharge Full 191.00 ft²/s Slope Full 0.02700 ft/ft Flow Type SubCritical GVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 ft GVF Output Data Upstream Depth 0.00 ft Profile Description 0.00 ft	Critical Depth		3.62	ft
Velocity 17.81 ft/s Velocity Head 4.93 ft Specific Energy 8.63 ft Froude Number 0.00 Froude Number Maximum Discharge 205.46 ft³/s Discharge Full 191.00 ft²/s Slope Full 0.02700 ft/ft Flow Type SubCritical GVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 ft GVF Output Data 0.00 ft Upstream Depth 0.00 ft Profile Description 0.00 ft	Percent Full		100.0	%
Velocity Head 4.93 ft Specific Energy 8.63 ft Froude Number 0.00 ************************************	Critical Slope		0.02411	ft/ft
Specific Energy 8.63 ft Froude Number 0.00 (1°)/s Maximum Discharge 205.46 ft²/s Discharge Full 191.00 ft²/s Slope Full 0.02700 ft/ft Flow Type SubCritical GVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 ft GVF Output Data Upstream Depth 0.00 ft Profile Description 0.00 ft	Velocity		17.81	ft/s
Froude Number 0.00 Maximum Discharge 205.46 ft²/s Discharge Full 191.00 ft²/s Slope Full 0.02700 ft/ft Flow Type SubCritical GVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 ft GVF Output Data 0.00 ft Upstream Depth 0.00 ft Profile Description 0.00 ft	Velocity Head		4.93	ft
Maximum Discharge 205.46 ft³/s Discharge Full 191.00 ft³/s Slope Full 0.02700 ft/ft Flow Type SubCritical GVF Input Data Downstream Depth 0.00 ft Length Number Of Steps 0 GVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft	Specific Energy		8.63	ft
Discharge Full 191.00 ft³/s Slope Full 0.02700 ft/ft Flow Type SubCritical	Froude Number		0.00	
Slope Full 0.02700 ft/ft Flow Type SubCritical GVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 GVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft	Maximum Discharge		205.46	ft³/s
Flow Type SubCritical GVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 GVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft	Discharge Full		191.00	ft³/s
GVF Input Data Downstream Depth Length 0.00 ft Number Of Steps 0 GVF Output Data Upstream Depth Profile Description Profile Headloss 0.00 ft	Slope Full		0.02700	ft/ft
Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 ft GVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft	Flow Type	SubCritical		
Length Number Of Steps GVF Output Data Upstream Depth Profile Description Profile Headloss 0.00 ft ft	GVF Input Data			
Number Of Steps 0 GVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft	Downstream Depth		0.00	ft
GVF Output Data Upstream Depth Profile Description Profile Headloss 0.00 ft	Length		0.00	ft
Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft	Number Of Steps		0	
Profile Description Profile Headloss 0.00 ft	GVF Output Data			
Profile Headloss 0.00 ft	Upstream Depth		0.00	ft
Profile Headloss 0.00 ft				
Average End Depth Over Rise 0.00 %			0.00	ft
	Average End Depth Over Rise		0.00	%

Worksheet for Facility 25 - 54-inch RCP

GVF Output Data

Normal Depth Over Rise	100.00	%
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	3.69	ft
Critical Depth	3.62	ft
Channel Slope	2.70	%
Critical Slope	0.02411	ft/ft

Cross Section for Facility 25 - 54-inch RCP

Project Description

Friction Method

Manning Formula

Solve For

Full Flow Diameter

Input Data

Roughness Coefficient	0.013	
Channel Slope	2.70	%
Normal Depth	3.69	ft
Diameter	3.69	ft
Discharge	191.00	ft³/s

Cross Section Image

V: 1 \(\sum_{H: 1} \)

Worksheet for Facility 26 - 54-inch RCP

	ikslieet loi i aci	iity 20 -	0+ III0II IX 01
Project Description			
Friction Method	Manning Formula		
Solve For	Full Flow Diameter		
Input Data			
Roughness Coefficient		0.013	
Channel Slope		2.50	%
Normal Depth		3.54	ft
Diameter		3.54	ft
Discharge		164.00	ft³/s
Results			
Diameter		3.54	ft
Normal Depth		3.54	ft
Flow Area		9.84	ft²
Wetted Perimeter		11.12	ft
Hydraulic Radius		0.89	ft
Top Width		0.00	ft
Critical Depth		3.45	ft
Percent Full		100.0	%
Critical Slope		0.02216	ft/ft
Velocity		16.66	ft/s
Velocity Head		4.31	ft
Specific Energy		7.85	ft
Froude Number		0.00	
Maximum Discharge		176.42	ft³/s
Discharge Full		164.00	ft³/s
Slope Full		0.02500	ft/ft
Flow Type	SubCritical		
GVF Input Data			
Downstream Depth		0.00	ft
Length		0.00	ft
Number Of Steps		0	
GVF Output Data			
Upstream Depth		0.00	ft
Profile Description			
Profile Headloss		0.00	ft
Average End Depth Over Rise		0.00	%
			and a second sec

Worksheet for Facility 26 - 54-inch RCP

Normal Depth Over Rise	100.00	%
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s

GVF Output Data

3.54 ft Normal Depth 3.45 ft Critical Depth

2.50 % Channel Slope

0.02216 ft/ft Critical Slope

Cross Section for Facility 26 - 54-inch RCP

Project Description

Friction Method

Manning Formula

Solve For

Full Flow Diameter

Input Data

Roughness Coefficient	0.013	
Channel Slope	2.50	%
Normal Depth	3.54	ft
Diameter	3.54	ft
Discharge	164.00	ft³/s

Cross Section Image

V: 1 \(\sum_{H: 1} \)

Woı	rksheet for Facil	ity 27-	36-inch RCP
Project Description			
Friction Method	Manning Formula		
Solve For	Full Flow Diameter		
Input Data			
Roughness Coefficient		0.013	
Channel Slope		4.50	%
Normal Depth		2.09	ft
Diameter		2.09	ft
Discharge		54.00	ft³/s
Results			
Diameter		2.09	ft
Normal Depth		2.09	ft
Flow Area		3.43	ft²
Wetted Perimeter		6.57	ft
Hydraulic Radius		0.52	ft
Top Width		0.00	ft
Critical Depth		2.07	ft
Percent Full		100.0	%
Critical Slope		0.04124	ft/ft
Velocity		15.73	ft/s
Velocity Head		3.85	ft
Specific Energy		5.94	ft
Froude Number		0.00	
Maximum Discharge		58.09	ft³/s
Discharge Full		54.00	ft³/s
Slope Full		0.04500	ft/ft
Flow Type	SubCritical		
GVF Input Data			
Downstream Depth		0.00	ft
Length		0.00	ft
Number Of Steps		0	
GVF Output Data			
Upstream Depth		0.00	ft
Profile Description			
Profile Headloss		0.00	ft
Average End Depth Over Rise		0.00	%
The second of th			

Worksheet for Facility 27- 36-inch RCP

GVF Output Data

Normal Depth Over Rise	100.00	%
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	2.09	ft
Critical Depth	2.07	ft
Channel Slope	4.50	%
Critical Slope	0.04124	ft/ft

Cross Section for Facility 27- 36-inch RCP

Project Description

Friction Method

Manning Formula

Solve For

Full Flow Diameter

Input Data

Roughness Coefficient	0.013	
Channel Slope	4.50	%
Normal Depth	2.09	ft
Diameter	2.09	ft
Discharge	54.00	ft³/s

Cross Section Image

V: 1 \(\sum_{H: 1} \)

Worksheet for Facility 28 - 11x9 RCB			
Project Description			
Friction Method	Manning Formula		
Solve For	Normal Depth		
Input Data			
Roughness Coefficient	0.015		
Channel Slope	1.50	%	
Height	9.00	ft	
Bottom Width	11.00	ft	
Discharge	2128.00	ft³/s	
Results			
Normal Depth	7.41	ft	
Flow Area	81.51	ft²	
Wetted Perimeter	25.82	ft	
Hydraulic Radius	3.16	ft	
Top Width	11.00	ft	
Critical Depth	10.52	ft	
Percent Full	82.3	%	
Critical Slope	0.00622	ft/ft	
Velocity	26.11	ft/s	
Velocity Head	10.59	ft	
Specific Energy	18.00	ft	
Froude Number	1.69		
Discharge Full	2197.70	ft³/s	
Slope Full	0.01600	ft/ft	
Flow Type	Supercritical		
GVF Input Data			
Downstream Depth	0.00	ft	
Length	0.00	ft	
Number Of Steps	0		
GVF Output Data			
Upstream Depth	0.00	ft	
Profile Description			
Profile Headloss	0.00	ft	
Average End Depth Over Rise	0.00	%	
Normal Depth Over Rise	82.33	%	
Downstream Velocity	Infinity	ft/s	

Worksheet for Facility 28 - 11x9 RCB

GVF Output Data

Upstream Velocity	Infinity	ft/s
Normal Depth	7.41	ft
Critical Depth	10.52	ft
Channel Slope	1.50	%
Critical Slope	0.00622	ft/ft

Cross Section for Facility 28 - 11x9 RCB

Project Description

Friction Method

Manning Formula

Solve For

Normal Depth

Input Data

Roughness Coefficient	0.015	
Channel Slope	1.50	%
Normal Depth	7.41	ft
Height	9.00	ft
Bottom Width	11.00	ft
Discharge	2128.00	ft³/s

Cross Section Image

V: 1 📐 H: 1

Worksheet for	Facility 29 - 66-inch RCP
Project Description	
Friction Method Manning Formu	a
Solve For Full Flow Diame	
Input Data	
Roughness Coefficient	0.013
Channel Slope	2.60 %
Normal Depth	4.64 ft
Diameter	4.64 ft
Discharge	344.00 ft ³ /s
Results	
Diameter	4.64 ft
Normal Depth	4.64 ft
Flow Area	16.91 ft²
Wetted Perimeter	14.58 ft
Hydraulic Radius	1.16 ft
Top Width	0.00 ft
Critical Depth	4.55 ft
Percent Full	100.0 %
Critical Slope	0.02329 ft/ft
Velocity	20.35 ft/s
Velocity Head	6.43 ft
Specific Energy	11.07 ft
Froude Number	0.00
Maximum Discharge	370.05 ft³/s
Discharge Full	344.00 ft ³ /s
Slope Full	0.02600 ft/ft
Flow Type SubCritical	
GVF Input Data	
Downstream Depth	0.00 ft
Length	0.00 ft
Number Of Steps	0
GVF Output Data	
Upstream Depth	
Profile Description	0.00 ft
Frome Description	0.00 ft
Profile Headloss	0.00 ft

Worksheet for Facility 29 - 66-inch RCP

GVF Output Data

Normal Depth Over Rise	100.00	%
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	4.64	ft
Critical Depth	4.55	ft
Channel Slope	2.60	%
Critical Slope	0.02329	ft/ft

Cross Section for Facility 29 - 66-inch RCP

Project Description

Friction Method

Manning Formula

Solve For

Full Flow Diameter

Input Data

Roughness Coefficient	0.013	
Channel Slope	2.60	%
Normal Depth	4.64	ft
Diameter	4.64	ft
Discharge	344.00	ft³/s

Cross Section Image

V: 1 📐 H: 1

	Worksheet for Facility 3	0 -	48-inch RCP
Project Description			
Friction Method	Manning Formula		
Solve For	Full Flow Diameter		
Input Data			
Roughness Coefficient	0.0	13	
Channel Slope	2.	50	%
Normal Depth	3.	13	ft
Diameter	3.	13	ft
Discharge	118	.00	ft³/s
Results			
Diameter	3	.13	ft
Normal Depth	3	.13	ft
Flow Area	7	.69	ft²
Wetted Perimeter	9	.83	ft
Hydraulic Radius	0	.78	ft
Top Width	0	.00	ft
Critical Depth	3	.04	ft
Percent Full	10	0.0	%
Critical Slope	0.022	808	ft/ft
Velocity	15	.34	ft/s
Velocity Head	3	.66	ft
Specific Energy	6	.79	ft
Froude Number	0	.00	
Maximum Discharge	126	.95	ft³/s
Discharge Full	118	.02	ft³/s
Slope Full	0.024	199	ft/ft
Flow Type	SubCritical		
GVF Input Data			
Downstream Depth	0	.00	ft
Length	0	.00	ft
Number Of Steps		0	
GVF Output Data			
Upstream Depth	0	.00	ft
Profile Description			
Profile Headloss	0	.00	ft

0.00 %

Average End Depth Over Rise

Worksheet for Facility 30 - 48-inch RCP

GVF Output Data

Normal Depth Over Rise	100.00	%
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	3.13	ft
Critical Depth	3.04	ft
Channel Slope	2.50	%
Critical Slope	0.02208	ft/ft

Cross Section for Facility 30 - 48-inch RCP

Project Description

Friction Method

Manning Formula

Solve For

Full Flow Diameter

Input Data

Roughness Coefficient	0.013	
Channel Slope	2.50	%
Normal Depth	3.13	ft
Diameter	3.13	ft
Discharge	118.00	ft³/s

Cross Section Image

V: 1 \(\sum_{H: 1} \)

Cross Section for Facility 30 - 48-inch RCP

Project Description

Friction Method

Manning Formula

Solve For

Full Flow Diameter

Input Data

Roughness Coefficient	0.013	
Channel Slope	2.50	%
Normal Depth	3.13	ft
Diameter	3.13	ft
Discharge	118.00	ft³/s

Cross Section Image

V: 1 \(\sum_{H:1} \)

	OINSHEEL IOI I a	icility 51	- 1170	NOD
Project Description				
Friction Method	Manning Formula			
Solve For	Normal Depth			
Input Data				
Roughness Coefficient		0.015		
Channel Slope		1.50	%	
Height		8.00	ft	
Bottom Width		11.00	ft	
Discharge		1910.00	ft³/s	
Results		157 159		
Normal Depth		6.81	ft	
Flow Area		74.96	ft²	
Wetted Perimeter		24.63	ft	
Hydraulic Radius		3.04	ft	
Top Width		11.00	ft	
Critical Depth		9.79	ft	
Percent Full		85.2	%	
Critical Slope		0.00599	ft/ft	
Velocity		25.48	ft/s	
Velocity Head		10.09	ft	
Specific Energy		16.90	ft	
Froude Number		1.72		
Discharge Full		1868.81	ft³/s	
Slope Full		0.01436	ft/ft	
Flow Type	Supercritical	, es : mad		
GVF Input Data		A 18.		
Downstream Depth	•	0.00	ft	
Length			ft	
Number Of Steps		0	2.5.	
GVF Output Data				
Upstream Depth		0.00	ft	
Profile Description				
Profile Headloss		0.00	ft	
Average End Depth Over Rise		0.00	%	
Normal Depth Over Rise		85.18	%	
Downstream Velocity		Infinity	ft/s	
Downstream velocity		minity	105	

Worksheet for Facility 31 - 11x8 RCB

GVF Output Data

Upstream Velocity	Infinity	ft/s
Normal Depth	6.81	ft
Critical Depth	9.79	ft
Channel Slope	1.50	%
Critical Slope	0.00599	ft/ft

Cross Section for Facility 31 - 11x8 RCB

Project Description

Friction Method

Manning Formula

Solve For

Normal Depth

Input Data

Roughness Coefficient	0.015	
Channel Slope	1.50	%
Normal Depth	6.81	ft
Height	8.00	ft
Bottom Width	11.00	ft
Discharge	1910.00	ft³/s

Cross Section Image

V: 1 \(\sum_\)
H: 1

MAIN 1
WSPGW
Stations
-12270.67
-12195.67
-12145.67
-12046.68
-11996.48
-11971.62
-11961.62
-11871.31
-11868.99
-11798.37
-11780.96
-11695.66
-11552.19
-11079.30
-10963.89
-10845.67
-10379.53
-10210.67
-9645.67

WSPGW ANALYSIS

MAIN 1

MAIN1.WSW

```
T1 THE SEVENTY
    GCW INC. PROJECT# 840.050
    FILENAME: MAIN1.WSW JAM
                                                    2619.400
SO -12270.6702614.000 1
                                                                       .000
                               035
TS -12195.6702617.000 2
                               .035
                                                                       .000
TS -12145.6702617.500 3
                                                                       .000
TS -12046.6802620.750
                               .040
                                                                       .000
TS -11996.4802621.300 5
                               .015
                                                                       .000
TS -11971.6202621.650 6
                               .015
TS -11961.6202621.810 10
                               .015
                                                                       .000
                               .015
                                                                       .000
  -11871.3102623.180 10
                                                                               .000 0
R
  -11868.9902623.000 10
                               .015
                                                                       .000
                                                                    -40.463
  -11798.3702625.000 10
                               .015
R
R
  -11780.9602625.480 10
                               .015
                                                                       .000
   -11695.6602627.860 10
                               .015
                                                                     48.868
R
  -11552.1902631.860 10
                               .015
                                                                       .000
R
  -11079.3002645.025 10
                               .015
                                                                     13.909
R
                                                                    -66.125
R
  -10963.8902648.238 10
                               .015
                                                                       .000
R
  -10845.6702651.530 10
                               .015
                                                                       .000
                                                                               .000 0
R
   -10379.5302655.259 10
                               .015
  -10210.6702656.610 10
                               .015
                                                                     90.000
R
                                                                               .000 0
                                                                       .000
   -9645.6702659.440 10
R
                               .015
R
   -9545.6702659.950 10
                               .015
                                                                       .000 11.000 0
R
    -9400.6702662.767 10
                               .015
                                                                      0.000
JX -9395.6702662.864 10 16 17.015
                                     328.000 168.0002662.8642662.864-45.0 66.0
    -9195.6702666.750 10
                               .015
                                                                       .000
R
WE -9195.6702666.750 12
TS
   -9165.7302668.537 13
                               .015
                                                                       .000
                                                                       .000
R
   -9119.1702671.317 13
                               .015
                               .015
                                                                     34.000
R
   -9030.8402672.200 13
                                                                       .000
R
   -8709.6402675.412 13
                               .015
R
   -8668.3802675.825 13
                               .015
                                                                       .000
                               .015
                                                                     12.000
R
    -8634.8002676.161 13
   -8544.4602677.064 13
                               .015
                                                                       .000
R
                                                                    -19.000
   -8492.2502677.586 13
                               .015
R
R
    -7909.6402683.412 13
                               .015
                                                                       .000
    -7776.9102684.766 13
                               .015
                                                                       .000
R
    -7745.0202686.243 13
                               .015
                                                                       .000
                                                                    -15.300
R
   -7605.9502692.682 13
                               .015
                               .015 1701.000
                                                      2700.918
JX -7519.0102698.724 21 15
                                                                        0.0
   -7519.0102698.724 14
WX
                               .015
                                                                    -12.600
R
    -7361.1002710.678 14
                               .015
   -7235.1202715.415 14
                               .015
                                                                    -12.400
R
                                                                      0.000
R
   -7123.5102719.611 14
                               .015
    -6922.5702727.166 14
                               .015
                                                                      0.000
R
R
    -6835.1202728.041 14
                               .015
                                                                      0.000
    -6748.9802728.902 14
                                                                      0.000
                               .015
R
                                                 9.0002731.5302731.530-30.0 30.0
                                      17.000
JX -6743.9802728.952 14 17 17.015
                                                                                    0.00
                               .015
R
    -6435.1202732.041 14
                                                                      0.000
    -6191.6202734.476 14
                               .015
                                                                      0.000
R
    -6178.9602734.602 14
                               .015
                                                                      0.000
JX -6173.9602734.651 19 16 16.015 211.000 109.0002735.1502735.150-30.0 30.0
                                                                                     0.000
R
   -6148.6202734.902 19
                               .015
                                                                      0.000
R
    -6138.2902735.004 19
                               .015
                                                                      0.000
                                                                     41.000
R
    -6058.1802735.797 19
                               .015
    -5813.2102738.222 19
                               .015
                                                                       .000
R
    -5759.1902738.757 19
                               .015
                                                                    -28.000
R
TS -5747.1902738.876 20
                               .015
                                                                       .000
    -5698.1902739.361 20
                               .015
                                                                       .000
R
                                                        .000
SH -5698.1902739.361 20
CD
   10
                1.000 12.000
                                 25.000
                                          .000
                                                .000
                                                        .00
        3
            1
                 .000
                                          .000
                                                .000
                                 17.000
                                                        .00
CD
    11
            0
                        9.000
                                                .000
                                                       .00
CD
                  .000
                       12.000
                                 25.000
                                          .000
    12
        3
            0
                                                .000
CD
    13
        3
            0
                  .000
                        12.000
                                 14.000
                                          .000
                                                       .00
                 .000
                        9.000
                                 14.000
                                          .000
                                                .000
                                                       .00
CD
            0
    14
        3
                                          .000
                                                .000
                  .000
                        8.000
                                 10.000
                                                       .00
CD
    15
        3
            0
CD
    16
            0
                  .000
                         6.000
                                  .000
                                          .000
                                                .000
                                                       .00
        4
                         4.000
CD
    17
            0
                  .000
                                   .000
                                          .000
                                                .000
                                                       .00
CD
                 1.000
                         9.000
                                 25.000
                                          .000
                                                .000
                                                       .00
    18
        3
            1
                                          .000
CD
    19
        3
            0
                 .000
                         9.000
                                 15,000
                                                .000
                                                       .00
                                          .000
                                                       .00
                                                .000
                 .000
CD
    20
        3
            0
                         9.000
                                 20.000
CD
    21
        3
            0
                  .000
                         9.000
                                 25.000
                                          .000
                                                .000
                                                        .00
                                   .00
                                          .00
                                                .00
                                                      .00
                                                                   .00
                                                                         .00
                                                                                .00
                                                                                      .00
                                                                                            .00
CD
        5
            0
                 .000
    1
                                          .00
                                                .00
CD
                  .000
                                    .00
                                                      .00
                                                             .00
                                                                   .00
                                                                         .00
                                                                               .00
                                                                                      .00
                                                                                            .00
            0
     2
                                                    Page 1
```

MAIN1.WSW .00 .00 .00 .00 .00 .00 CD 3 0 .000 .00 .00 .00 .00 CD 0 .000 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 CD 0 .000 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 5 .000 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 CD 6 5 0 .00 .00 .00 .00 .00 CD 7 5 0 .000 .00 .00 .00 .00 .00 PTS .000 30.000 18.200 25.000 26.100 25.000 33.300 26.000 38.300 26.000 43.800 25.000 51.800 24.000 61.800 20.000 77.300 17.000 92.800 14.000 PTS 113.100 20.000132.400 25.000140.900 29.000151.700 30.000 PTS $211 \qquad .000 \ 35.000 \ 26.300 \ 30.000 \ 37.200 \ 25.000 \ 44.700 \ 25.000 \ 45.700 \ 26.000$ PTS 48.500 26.000 51.670 22.000 72.200 17.000 92.000 18.000123.100 32.800 PTS 147.000 35.000 PTS 3 7 .000 35.000 21.900 30.000 47.700 30.000 71.200 18.400 90.600 17.500 PTS 111.000 19.000146.500 37.000 PTS .000 35.000 10.420 30.000 19.300 25.000 24.900 22.000 38.600 20.800 PTS 83.700 20.800 87.600 25.000 98.900 30.000100.600 35.000 PTS .000 48.000 19.090 48.000 50.850 45.000111.110 21.000159.240 21.000 PTS 159.240 21.000186.970 35.980248.780 40.000 PTS 6 6 .000 49.000 11.030 48.000 54.930 38.000 84.460 22.000136.390 22.000 PTS 173.210 40.000 2130.000 .0 Q

♀ FILE: MAIN1.WSW

MAIN1.OUT

W S P G W - CIVILDESIGN Version 14.08
Program Package Serial Number: 7044

WATER SURFACE PROFILE LISTING

Date: 3- 3-2016 Time:10: 3:30

PAGE 1

WATEK
THE SEVENTY
GCW INC. PROJECT# 840.050
FILENAME: MAIN1.WSW JAM

******	*****	******	******	********	******	*****	******	*****	*****	*****	*****	*****	****	*****	***
	Invert	Depth	Water	Q	Vel	Vel	Energy	Super	Critical	Flow Top	Height/	Base Wt		No Wt	ch.
Station	Elev	(FT)	Elev	(CFS)	(FPS)	Head	Grd.El.	Elev	Depth	Width	DiaFT	or I.D.	ZL	Prs/I	Pip
-												li			-
L/Elem	Ch Slope	i		1		SF Ave	HF	SE Doth	Froude N	Norm Dp	"N"	X-Fall	ZR	Туре	Ch
******	*****	******	*****	*****	******		*****	*****	*****	*****	*****	*****	****	****	
					,						i	i i			
-12270.670	2614.000	7.896	2621.896	4673.00	17.79	4 92	2626.81	.00	9.43	63.36	1	' 1'		0	.0
		I					l	l	1		1	11-	2	I -	
TRANS STR	.0400			leer cod	1	.0179	1.34	7.90	1.54		.035			TP-C	OPEN
TICHUD DITC	.0400	r i	1	r i	1	.01/5	1 2.51	1	1	1	1	f T		1	,
-12195.670	2617.000	9.000	2626.000	4673.00	12.16	2.29	2628.29	.00	9.00	73.79	I.	2		0	. 0
-12193.070	2017.000	J.000							1		I	II	_	1_	. 0
TRANS STR	.0100	-	-	-	1	.0066	.33	9.00	.94	-	.035	11		TD_(OPEN
TRANS SIR	.0100	r :	1		1	.0000		J.00		i i	.035	E T		1 11)FEN
10145 670	0617 500	10 020	2627 520	4672 00	8.78	1.20	2628.74	00	7.49	75.16	L :	3		1	.0
-12145.670	2617.500	10.039	2627.539	4673.00			. District Control of the control of	.00			F			, 0	. 0
			-			-				ı	E product		-	ļ- 	
TRANS STR	.0328		i		r			10.03	9 .582	2	.04	,		1 11	R-OPEN
					1		1			62.65	1	1 .1		1	
-12046.680	2620.750	2.538	2623.288	4673.00	32.08	15.98	2639.26	.00	5.81	63.65	P	4		. 0	.0
			-				l					II	-	I	
TRANS STR	.0110					.0369	1.85	2.54	3.74	i	.015			IR-C	OPEN
	Į .						l	l	1	l	1	1 1		1	20
-11996.480	2621.300	2.585	2623.885	4673.00	33.62	17.55	2641.44	.00	6.03	59.41	e :	5		. 0	. 0
	-						l	l	10	-		II	-	I	
TRANS STR	.0141					.0409	1.02	2.59	3.87		.015			IR-0	OPEN
					l				1	1	l	1 1		i	
-11971.620	2621.650	2.384	2624.034	4673.00	34.65	18.64	2642.68	.00	5.85	61.21		. 6		. 0	. 0
_									-				-	-	
TRANS STR	.0160					.0337	. 34	2.38	4.11		.015			IR-C	OPEN
								l		l		1 1		l .	
-11961.620	2621.810	6.099	2627.909	4673.00	31.93	15.83	2643.74	.00	10.56	25.00	12.000	25.000	.00	1 :	1.0
-][-	-	
90.311	.0152					.0248	2.24	6.10	2.33	7.23	.015	.00	.00	BOX	
												1			
-11871.310	2623.180	5.903	2629.083	4673.00	32.99		2645.98	.00	10.56	25.00	12.000	25.000	.00	1 :	1.0
=			H -									11	-	-	
2.319	0776					.0262	.06	5.90	2.44	.00	.015	.00	.00	BOX	
-11868.990	2623.000	5.853	2628.853	4673.00	33.27	17.19	2646.04	12.00	10.56	25.00	12.000	25.000	.00	1 :	1.0
-					[]								-	-	
70.620	.0283	-				.0263	1.86	12.00	2.47	5.71	.015	.00	.00	BOX	
Ŷ FILE: MAI	N1.WSW			W S	P G W -	CIVILDES	SIGN Version	n 14.08					1	PAGE	2
			Program	Package Se	erial Num	ber: 70	44								
					WATER	SURFACE	PROFILE L	ISTING			Date: 3-	3-2016	Time:1	0: 3:	30
		THE	SEVENTY												
				PROJECT# 84	40.050										
			FILENAMI	E: MAIN1.W	SW JAM										
*****	******	*****	*****	******	******	*****	******	*****	*****	******	*****	******	****	****	***

			FILENAME	: MAINI.WS	SW JAM									
******	Invert	Depth	Water	0	l Vel	Vel	Energy	Super	Critical	Flow Top	Height/	Base Wtl		No Wth
Station	Elev	(FT)	Elev	(CFS)	(FPS)	Head	Grd.El.	Elev	Depth		DiaFT		ZL	Prs/Pip
-														
L/Elem	Ch Slope		*******	*****	******	SF Ave	HF *****	SE Dpth	Froude N	Norm Dp	"N"	X-Fall	ZR ****	Type Ch
******	*******	*******	********	*****	* * * * * * *	*****	******	******	*******			******	****	
-11798.370			2630.882	4673.00			2647.90	.00	10.56	25.00	12.000	25.000	.00	1 1.0
17.410						.0261	.45	5.88	2.46	 5.77	.015	 .00	.00	BOX
17.410	1		l I		I	.0201	1	1	1	1	1	1 1		I
-11780.960	2625.480		2631.367	4673.00	33.08		2648.35	12.00	10.56	25.00	12.000	25.000	.00	1 1.0
85.300	.0279	-				.0259	2.21	12.00	2.45	5.74	.015	.00	.00	BOX
		1						1	l		l	[]		1
-11695.660		5.923	2633.783 	4673.00	32.87	16.78	2650.56 	.00	10.56	25.00 	12.000	25.000 	.00	1 1.0 I-
143.470					t st F	.0252	3.61	5.92	2.43	5.74	.015	.00	.00	вох
-11552.190	2631.860	6.008	2637.868	4673.00	32.41	16.31	2654.18	.40	10.56	25.00	12.000	25.000	.00	1 1.0
-												[]	-	-
204.461	.0278	r 1			F	.0237	4.84	6.41	2.38	5.75	.015	.00	.00	BOX
-11347.730	2637.552	6.213	2643.765	4673.00	31.34	15.25	2659.02	.38	10.56	25.00	12.000	25.000	.00	1 1.0
-												[]	-	l -
164.742	.0278	1	r 1		ſ	.0213	3.50	6.59	2.26	5.75 I	.015 I	.00	.00	BOX
-11182.990	2642.138	6.516	2648.655	4673.00	29.88	13.86	2662.52	.34	10.56	25.00	12.000	25.000	.00	1 1.0
							-					- -	-	l
103.688	.0278	ſ	1 1		ľ	.0188	1.94	6.86 I	2.11	5.75	.015	.00	.00	BOX
-11079.300	2645.025		2651.859	4673.00	28.49	12.60	2664.46	12.00	10.56	25.00	12.000	25.000	.00	1 1.0
59.925	.0278	-	[-	ll	.0167	1.00	12.00	1.96	5.75	.015	.00	.00	BOX
				4677 00	07.40	11 67	2665 45	12.00	10.56	25.00	12 000	1 25 200	00	
-11019.380		7.102	2653.795	4673.00	27.42		2665.47	12.00	10.56	25.00	12.000	25.000	.00	1 1.0 -
55.485						.0150	.83	12.00	1.85	5.75	.015	.00	.00	вох
-10963.890	2648.238	7.449	2655.687	4673.00	26.14	10.61	2666.30	.00	10.56	25.00	12.000	25.000	.00	1 1.0
_						4000 AND		l				[]		-
26.600				w c	D C W	.0135	.36 SIGN Versio	7.45	1.72	5.75	.015	.00	.00	BOX PAGE 3
f FILE: MA	TMT.MDM		Program	Package Se				NI T4.00						TAGE 3

Program Package Serial Number: 7044
WATER SURFACE PROFILE LISTING

Date: 3- 3-2016 Time:10: 3:30

		THE	SEVENTY												
			GCW INC. I												
			FILENAME	E: MAIN1.W	SW JAM										
********	******	*******	******		******	*******					*********		*****	No W	****
a	Invert	Depth	Water	Q (CFS)	Vel (FPS)	Vel	Energy Grd.El.	Super	Depth	Flow Top Width	DiaFT		ZL	Prs/	
Station	Elev	(FT)	Elev	(CFS)	(FPS) 	Head	GIG.EI.	Fiev	Depth	width	DiaFi	OL I.D.	21	PLS/	PID
L/Elem	Ch Slope	-			1	SF Ave	HF	CF Doth	Froude N	Norm Do	"N"	X-Fall	ZR	Trmo	Ch
T/ETem	Ch Stope					*****	nr	SE DOCH	rroude N	MOTH DD	******	******	****	Type	
******	*****		*******		~ ~ ~ ~ ~	******									
10027 200	2648.979	7.669	2656.648	4673.00	25.39	10.01	2666.66	.00	10.56	25.00	12.000	25.000	.00	1	1.0
-10937.290	2646.979	1.009	2050.040				2000.00	.00	10.56	Z5.00	12.000	25.000	.00	1	1.0
34.373	.0278]	,	-	[-	.0123	.42	7.67	1.65	5.75	.015	.00	.00	BOX	
34.3/3	.0278	1		ı	ř.	.0123	1 .72	1 7.07	1.05	1 3.73	1 .015		.00	I	
-10902.920	2649.936	8.044	2657.979	4673.00	24.21	9.10	2667.08	.00	10.56	25.00	12.000	25.000	.00	1	1.0
-10502.520	2049.930	1			II		1	1	1	1		11	_	1 -	1.0
25.571	.0278		J			.0109	.28	8.04	1.54	5.75	.015	.00	.00	BOX	
25.571	.0270	1	1	I	f	.0205	1	1	1	1	1	1		1	
-10877.340	2650.648	8.436	2659.084	4673.00	23.08	8.27	2667.36	.00	10.56	25.00	12.000	25.000	.00	1	1.0
100//.510		1			II			1				I I	-	1-	
18.653	.0278					.0096	.18	8.44	1.43	5.75	.015	.00	.00	вох	
10.033	.0270	1	1	l	Î		1	1	1	1	1	1		1	
-10858.690	2651.167	8.848	2660.015	4673.00	22.01	7.52	2667.54	.00	10.56	25.00	12.000	25.000	.00	1	1.0
-		1		-				l					-	l -	
13.021	.0278	,				.0085	.11	8.85	1.33	5.75	.015	.00	.00	вох	
20.022		1	ĺ	l	1		l	1	I	1	1	1		1	
-10845.670	2651.530	9.280	2660.810	4673.00	20.98	6.84	2667.65	.00	10.56	25.00	12.000	25.000	.00	1	1.0
-		1		l			l	I			I		-	I -	
64.175	.0080	1				.0080	.51	9.28	1.24	9.28	.015	.00	.00	BOX	
	1.5.5.5.5	1	1	I	1		500000	1	1		l .	1		1	
-10781.500	2652.043	9.280	2661.323	4673.00	20.98	6.84	2668.16	.00	10.56	25.00	12.000	25.000	.00	1	1.0
-		-											-	-	
401.965	.0080			•0		.0077	3.11	9.28	1.24	9.28	.015	.00	.00	BOX	
		1	1	ľ	I		[1	1		1			1	
-10379.530	2655.259	9.526	2664.785	4673.00	20.44	6.49	2671.27	12.00	10.56	25.00	12.000	25.000	.00	1	1.0
-													-	-	
43.904	.0080					.0074	.33	12.00	1.19	9.28	.015	.00	.00	BOX	
					I			1	I		1			1	
-10335.630	2655.610	9.599	2665.209	4673.00	20.28	6.39	2671.60	12.00	10.56	25.00	12.000	25.000	.00	1	1.0
~]			1					-	-	
105.124	.0080					.0069	.73	12.00	1.18	9.28	.015	.00	.00	BOX	
		l					l		1		l				
-10230.500	2656.451	10.068	2666.519	4673.00	19.34	5.81	2672.33	12.00	10.56	25.00	12.000	25.000	.00	. 1	1.0
-									-	-			-	-	
19.832	.0080					.0062	.12	12.00	1.10	9.28	.015	.00		BOX	
우 FILE: MAI	N1.WSW						SIGN Versi	on 14.08					1	PAGE	4
			Program	Package S											
					WATER	SURFACE	PROFILE L	ISTING			Date: 3-	3-2016	Time:1	0: 3:	30
		THE	SEVENTY												
				PROJECT# 8											
	and the second second second		FILENAM	E: MAIN1.W	SW JAM										
******	******	******	*******	******	*******	******	*******	******	******	*******	******	*******	*****	****	***
	Invert	Depth	Water	Q	Vel	Vel	Energy		Critical					No W	
Station	Elev	(FT)	Elev	(CFS)	(FPS)	Head	Grd.El.	Elev	Depth	Width	DiaFT	or I.D.	ZL	Prs/	Pip
										-				_	
L/Elem	Ch Slope	F	1	1	1	SF Ave	HF	ISE Dotn	Froude N	MOLIM DD	"N"	X-Fall	ZR	Type	e Cn

2667.170 -10210.670 77.532 .0051 .40 10.56 .00 .00 -|-11.075 2668.074 4673.00 17.58 4.80 2672.87 - -|- -|- -|- -|- -|- -|--10133.140 2656.999 .00 25.00 12.000 25.000 -|-.0051 | 12.000 | 25.000 .00 -|- -|- -|--10120.820 2657.060 HYDRAULIC JUMP -- WARNING - Flow depth near top of box conduit -25.000 12.000 5.83 2672.94 25.00 -10120.820 2657.060 41.956 .0050 .0068 .29 10.05 11.20 .015 .00 BOX -10078.860 2657.270 -|- -6.23 2673.22 .00 25.00 12.000 1 1.0 2666.995 10.56 25.000 .00 4673.00 20.02 .0050 .50 вох 66.513 5 2673.72 .00 21.00 -10012.350 2657.603 6.85 .00 4673.00 10.56 .0085 940.438 2657.963 -|- -73.994 .0050 0 22.02 7.53 2674.34 7.53 25.00 -9940.438 4673.00 1.33 11.20 BOX W S P G W - CIVILDESIGN Version 14.08 Program Package Serial Number: 7044 WATER SURFACE PROFILE LISTING

THE SEVENTY GCW INC. PROJECT# 840.050

	FILENAME: MAIN1.WSW JAM													
******	******	******	******	******	******	******	******	******	******	******	******	******	****	******
	Invert	Depth	Water	l Q	Vel	Vel	Energy	Super	Critical	Flow Top	Height/	Base Wt	1	No Wth
Station	Elev	(FT)	Elev	(CFS)	(FPS)	Head	Grd.El.	Elev	Depth	Width	DiaFT	or I.D.	ZL	Prs/Pip
			±1 1±											
L/Elem	Ch Slope					SF Ave	HF	SE Dpth	Froude N	Norm Dp	"N"	X-Fall	ZR	Type Ch
******	******	******	*****	******	******	******	*******	******	******	******	******	******	****	*****

Date: 3- 3-2016 Time:10: 3:30

12.000 8.29 2675.05 .00 10.56 25.00 25.000 .00 1 1.0 .015 .0050 11.20 74.374 .81 .00 .0109 8.43 1.43 .00 BOX -9792.070 1 1.0 2658.707 9.11 2675.86 .00 10.56 25.00 12.000 25.000 .00 2666.743 73.785 .0050 .0123 .91 8.04 1.54 11.20 .015 .00 .00 вох -9718.285 2659.076 2666.739 25.41 10.03 2676.76 72.615 .0050 .0139 1.01 1.65 11.20 .015 .00 .00 BOX 2677.77 25.000 1 1.0 -9645.670 .00 10.56 25.00 12.000 .00 2659.440 11.03 .00 .0151 7.31 1.77 11.11 .015 29.035 .0051 .00 BOX -9616 635 2659.588 11.46 2678.21 .00 10.56 25.00 12.000 25.000 .00 1 1.0 2666.756 4673.00 27.16 .0165 .015 70.965 .0051 11.11 .00 вох 12.60 2679.39 10.56 12.000 25.000 .00 1 1.0 -9545.670 2659.950 6.58 .015 .00 .00 BOX 2662.767 25.000 1 1.0 -9400.670 2669.728 12.15 2681.88 .00 10.56 25.00 12.000 .00 .0194 6.96 .015 .0215 .11 1.91 .00 вох JUNCT STR .00 2662.864 1 1.0 -9395.670 2668.265 4177.00 32.23 16.13 2684.39 .00 9.80 25.00 12.000 25.000 .00 -|-56.390 -|-1.51 5.40 2.49 6.04 .015 .00 .00 вох .0194 -9339.280 2663.960 1 1.0 .00 25.00 25.000 -|-143.610 .0194 \$ FILE: MAIN1.WSW .0293 4.21 5.32 2.55 6.04 .015 .00 .00 BOX W S P G W - CIVILDESIGN Version 14.08

Program Package Serial Number: 7044
WATER SURFACE PROFILE LISTING

Date: 3- 3-2016 Time:10: 3:30

THE SEVENTY
GCW INC. PROJECT# 840.050
FILENAME: MAIN1.WSW JAM

			FILENAME	S: MAINI.W	MAU JAM			******						++++	+++
******	Invert	Depth	Water	Q	l Vel	Vel	Energy	Super	Critical	Flow Top	Height/	Base Wt		No W	th.
Station	Elev	(FT)	Elev	(CFS)	(FPS)	Head	Grd.El.				DiaFT		ZL	Prs/	
-															_
L/Elem	Ch Slope	I				SF Ave	HF		Froude N		"N"	X-Fall	ZR	Type	
******	******	******	******	*****	******	*****	******	******	******	******	*****	******	****	****	***
0105 650	1 0000 000	- 071	2671.821	4177.00	34.32	10.00	2690.11	.00	9.80	25.00	12.000	25.000	.00	1	1 0
-9195.670	2666.750		1	41/7.00	34.32 		2690.11	l	J. 00 -		12.000	25.000 	00	1-	1.0
WALL EN					1			F	I.	1		1			
	1	1	1		1		l	1	1	I	1	1 1		Î	
-9195.670	2666.750	4.619	2671.369	4177.00	36.17	20.31	2691.68	.00	9.54	25.00	12.000	25.000	.00	0	. 0
-	-		[-			ll		I	
TRANS STR	.0597	i .			î	.0211	.63	4.62	2.97	1	.015	.00	.00	BOX	
-9165.730	2668.537	9.477	2678.014	4177.00	31.48	15.39	2693.40	.00	12.00	14.00	12.000	14.000	.00	0	. 0
- 5105.750								I				11	-	1-	. 0
13.507	.0597		1			.0152	.21	9.48	1.80	5.73	.015	.00	.00	BOX	
	1	1	[1		1	1			
-9152.224	2669.344		2679.106	4177.00	30.56	14.50	2693.61	.00	12.00	14.00	12.000	14.000	.00	0	. 0
- 10 225	.0597					.0138	.25	9.76	1.72	5.73	.015		.00	BOX	
18.337	.0597	1	F 1		Ē	.0136	.25 I	9.76	1.72	5.73 I	.015	1 .00	.00	I	
-9133.887	2670.438	10.239	2680.677	4177.00	29.14	13.19	2693.86	.00	12.00	14.00	12.000	14.000	.00	0	. 0
-		-											-	-	
14.717	.0597					.0122	.18	10.24	1.60	5.73	.015	.00	.00	BOX	
	1	1								l	1	1			
-9119.170		10.738		4177.00	27.78	11.99	2694.04	12.00	12.00	14.00	12.000	14.000	.00	. 0	. 0
88.330	.0100	-			[]	.0116	1.03	12.00	1.49	11.34	.015	.00	.00	BOX	
88.550	1	1	i i	i	Ī.	.0110	1.05	1	1	1	1	1		I	
-9030.840	2672.200	10.624	2682.824	4177.00	28.08	12.25	2695.07	.00	12.00	14.00	12.000	14.000	.00	0	. 0
=]												-	-	
48.862	.0100					.0119	.58	10.62	1.52	11.34	.015	.00	.00	BOX	
0001 000	2672.689	10.555	2602 242	4177.00	28.27	12.41	2695.65	.00	12.00	14.00	12.000	14.000	.00	0	. 0
-8981.978	26/2.689	10.555	2683.243				2095.05	I		•	12.000	14.000	.00	1-	. 0
272.338	.0100	die ee	Lane and			.0128	3.47	10.55	1.53	11.34	.015	.00	.00	BOX	
2.2.000	1	1	1	l	1		1		1	1	1	1 1	1		
-8709.640	2675.412	10.063	2685.475	4177.00	29.65	13.65	2699.12	.00	12.00	14.00	12.000	14.000	.00	0	.0
-									l			ll		1	
41.260					D G W	.0137	.56	10.06	1.65	11.34	.015	.00		BOX	-
₽ FILE: MAI	INI.WSW		Program	Package S			SIGN Versi	OH 14.08						PAGE	7
			FIOGLAM	rackage S	crial Nu	mer: /0	**				n	2 2225			2.0

THE SEVENTY

GCW INC. PROJECT# 840.050

Date: 3- 3-2016 Time:10: 3:30

FILENAME: MAIN1.WSW JAM														
******	******	*******	*****	******	******	******	******	*****	******	*****	*****	*****		*****
	Invert	Depth	Water	l Q	Vel	Vel	Energy	Super	Critical	Flow Top	Height/	Base Wt	ľ.	No Wth
Station	Elev	(FT)	Elev	(CFS)	(FPS)	Head	Grd.El.	Elev	Depth	Width	DiaFT	or I.D.	ZL	Prs/Pip
-														
	Ch Slope	İ			ĺ	SF Ave			Froude N			X-Fall		Type Ch
******	******	******	******	******	*****	*****	*******	******	******	******	******	******	****	******
		ĺ						1		1	1	1		
-8668.380	2675.825	9.977	2685.802	4177.00	29.91	13.89	2699.69	12.00	12.00	14.00	12.000	14.000	.00	0 .0
-													-	-

WATER SURFACE PROFILE LISTING

.0140 12.00 1.67 11.34 .015 33.580 .47 .00 .00 .0100 -8634.800 2676.161 .00 12.00 14.00 12.000 14.000 .00 0 .015 1.69 11.34 .00 BOX 2.460 2677.064 -|-52.210 30.78 14.71 2701.47 12 00 12.00 14 00 12 000 0 -8544.460 4177.00 14.000 .00 .0151 .79 12.00 1.74 11.34 .015 .00 .00 BOX -8492.250 15.10 2702.26 12.00 14.00 0 2677.586 12.000 14.000 .00 37.142 .0156 1.78 11.34 .00 .00 .0100 -8455.108 2677.957 31.50 15.41 2702.84 12.00 12.000 14.000 0 161.290 .0100 .0168 2.71 9.47 1.80 11.34 .015 .00 .00 BOX -8293.818 2679.570 16 95 2705 55 0.0 12 00 14 00 12.000 14 000 .00 0 2688.601 4177 00 2.69 1.94 11.34 .015 141.259 .0100 .0190 9.03 .00 .00 BOX 9 2680.983 -|--8152.559 2689.594 18.64 2708.24 .00 12.00 14.00 12.000 14.000 .00 0 .0100 -8025.626 2682.252 -|-20.51 2710.97 .00 12.00 14.00 12.000 14.000 .00 0 .0100 .015 115.986 .0244 2.83 2.24 11.34 8.21 .00 .00 вох 909.640 2683.412 -|- -26.177 .0102 -7909.640 22.56 2713.80 .00 12.00 14.00 12.000 14.000 .00 0 7.828 2691.240 4177.00 38.11 -|-.0263 /II 7.83 .69 2.40 11.25 .015 .00 .00 вох W S P G W - CIVILDESIGN Version 14.08 ♀ FILE: MAIN1.WSW PAGE

Program Package Serial Number: 7044
WATER SURFACE PROFILE LISTING

Date: 3- 3-2016 Time:10: 3:30

THE SEVENTY
GCW INC. PROJECT# 840.050
FILENAME: MAIN1.WSW JAM

*******	******	******	******	*****	*****	*****	******	*****	*****	*****	*****	*****	*****	****	***
Station	Invert Elev	Depth (FT)	Water Elev	Q (CFS)	Vel (FPS)	Vel Head	Energy Grd.El.	Super	Critical Depth	Flow Top Width		Base Wt		No Wt	
-		- ''		- '	- '									,	
L/Elem	Ch Slope					SF Ave	HF	SE Dpth	Froude N	Norm Dp	"N"	X-Fall	ZR	Туре	
******	******	*****	*****	******	******	*****	*******	******	******	******	******	******	****	****	***
-7883.463	2683.679	7.741	,	4177.00	 38.54 	23.06		.00 	12.00	14.00	12.000	14.000	.00	0	.0
106.553	.0102			- -		.0285	3.03	7.74		11.25	.015	.00	.00	BOX	
-7776.910	2684.766	7.381	2692.147	4177.00	40.42	25.37	2717.52	.00	12.00	14.00	12.000	14.000	.00	0	.0
31.890	.0463	-				.0298	.95	7.38	2.62	6.30	.015	.00	.00	BOX	
-7745.020	2686.243	7.473	2693.716	4177.00	39.93 		2718.47	1.33	12.00	14.00	12.000	14.000	.00	' 0 !-	.0
51.663	.0463				1	.0284	1 1.47	8.80	2.57	6.30	.015	.00	.00	вох	
-7693.357	2688.635 	7.644		4177.00	39.03 	23.66	2719.94 	1.27	12.00	14.00	12.000	14.000	.00	0 1 -	.0
87.407	.0463		1	lie I	i I	.0260	2.27	8.92	2.49	6.30	.015	.00	.00	BOX	
-7605.950	2692.682	8.017	2700.698	4177.00	37.22		2722.21	.00	12.00	14.00	12.000	14.000	.00	0	.0
JUNCT STR	.0695	1	1	li en	1	.0457	3.97	9.17	2.32	ı	.015	.00	.00	вох	
-7519.010	2698.724	2.413	2701.137	2476.00	41.04 	26.15	2727.29	1.82	6.73 -	25.00	9.000	25.000	.00	0	.0
WALL EX	CT			r	1		ı	1	I	ı	1	1 1	i .	l	
-7519.010	2698.724	4.391	2703.115	2476.00	40.27	25.19	2728.30	.98	9.00 	14.00	9.000	14.000	.00	0 -	.0
26.372	.0757			l.	i .	.0428	1.13	5.37	3.39	3.63	.015	.00	.00	вох	
-7492.638	2700.720	4.476	2705.196	2476.00	39.51 	24.24	2729.44	.95	9.00	14.00	9.000	14.000	.00	0	.0
54.218	.0757			i. Č	, , I	.0391	2.12	5.42	3.29	3.63	.015	.00	.00	вох	
-7438.420	2704.825	4.694	2709.519	2476.00 	37.67 	22.04	2731.56	.86 	9.00 	14.00	9.000	14.000	.00	0 -	.0
42.758	.0757	-	-	-		.0342	1.46	5.55	3.06	3.63	.015	.00	.00		
우 FILE: MAI				WS			SIGN Version	n 14.08					I	PAGE	9
			Drogram	Dagkage C.	arial Mun	hor. 70	1.4								

Program Package Serial Number: 7044
WATER SURFACE PROFILE LISTING

Date: 3- 3-2016 Time:10: 3:30

THE SEVENTY
GCW INC. PROJECT# 840.050
FILENAME: MAIN1.WSW JAM

******	*****	*******	*****	******	******	******	******	*****	******	*****	*****	*****	*****	*****	**
	Invert	Depth	Water	l Q	Vel	Vel	Energy	Super	Critical	Flow Top	Height/	Base Wt	1	No Wt	h
Station	Elev	(FT)	Elev	(CFS)	(FPS)	Head	Grd.El.	Elev	Depth	Width	DiaFT	or I.D.	ZL	Prs/P	Pip
-			-1 1-												
L/Elem	Ch Slope					SF Ave	HF	SE Dpth	Froude N	Norm Dp	"N"	X-Fall	ZR	Type	Ch
******	******	******	******	******	******	*****	******	******	******	******	******	*****	****	****	***
		1							1	1		1		1	
-7395.662	2708.062	4.924	2712.985	2476.00	35.92	20.04	2733.02	.78	9.00	14.00	9.000	14.000	.00	0	.0
													-	-	
34.562	.0757					.0300	1.04	5.70	2.85	3.63	.015	.00	.00	BOX	
					l			I	1	I	I			1	
-7361.100	2710.678	5.164	2715.842	2476.00	34.25	18.21	2734.06	.88	9.00	14.00	9.000	14.000	.00	0	. 0

.015 .00 4.64 .00 3.412 .0376 0279 .10 6.04 2.66 BOX .00 0 2734.15 .87 9.000 14.000 -7357.688 2710.806 2715.975 2476.00 34.21 18.18 9.00 14.00 .0 6.04 122.568 .0376 .0262 9.000 14.000 .00 0 -7235.120 2715.415 2720.836 32.62 16.52 2737.36 14.00 2476.00 .0238 .015 0.0 .00 BOX -7198.058 2716.808 2722.333 2476.00 32.01 15.91 2738.25 .00 9.00 14.00 9.000 14.000 .00 0 .015 0376 .0218 1.63 4.64 .00 .00 BOX 74 548 5.52 2.40 9.000 14.000 .00 2725.405 14.47 2739.87 .00 9.00 14.00 -7123.510 2719.611 2476.00 30.52 12.280 .0376 .0201 4.64 .015 .00 .00 BOX 14.00 9.000 14.000 .00 0 2720.073 2725.921 2476.00 30.24 53.094 .0376 .0187 .99 5.85 4.64 .015 .00 .00 BOX -7058.136 2722.069 9.000 14.000 0 2728.203 2476.00 28.83 12.91 2741.11 .00 9.00 14.00 .00 .0 .0376 .68 6.13 4.64 .015 41 235 .0164 2.05 .00 .00 BOX 9.000 14.000 .00 0 11.73 2741.79 .00 14.00 -7016.901 2723.619 2730.053 2476.00 27.49 6.434 32.483 .0376 W S P G W - CIVILDESIGN Version 14.08 ₽ FILE: MAIN1.WSW PAGE 10

Program Package Serial Number: 7044
WATER SURFACE PROFILE LISTING

Date: 3- 3-2016 Time:10: 3:30

THE SEVENTY
GCW INC. PROJECT# 840.050
FILENAME: MAIN1.WSW JAM

Vel |Critical|Flow Top|Height/|Base Wt Invert. Depth Water Vel Energy Super No Wth (CFS) (FPS) Head Grd.El. Elev Depth Width Dia.-FT or I.D. Z.T. Prs/Pip "N" ZR L/Elem Ch Slope SF Ave HF SE Dpth Froude N Norm Dp X-Fall Type Ch 10.67 .00 9.00 14.00 9.000 14.000 .00 0 25.718 .0376 .0127 .33 6.75 1.78 4.64 .015 . 00 .00 BOX 9.000 14.000 0 -6958.700 2725.808 7.077 2732.885 2476.00 24.99 9.70 2742.58 .00 9.00 14.00 .00 20.298 .0376 .0112 .23 7.08 4.64 .015 .00 .00 BOX 2733.993 2476.00 23.83 8.82 .00 9.000 .00 0 2726.571 -6938.402 .015 .00 .00 вох 15.832 -6922.570 2727.166 2734.951 2476.00 22.72 8.01 2742.97 .00 9.00 14.00 9.000 14.000 .00 0 7.55 .0100 0091 80 7 78 1.43 015 .00 - 00 BOX -6835.120 2728.041 7.860 2735.901 2476.00 22.50 7.86 2743.76 .00 9.00 14.00 9.000 14.000 .00 0 .0089 7.86 7.55 .015 .0100 .76 1.41 .00 .00 BOX 86.140 0 2736.863 2728.902 -6748.980 .0091 .05 .015 .00 .00 вох .00 -6743.980 2728.952 2736.599 2450.00 22.88 8.13 2744.73 14.00 9.000 14.000 - 00 0 .0090 7.65 7.49 .015 308.860 .0100 2.79 .00 .00 BOX 2747.52 .00 14.00 9.000 14.000 .00 0 -6435.121 2732.041 2739.989 2450.00 22.02 7.53 7.948 .0084 .49 .0100 58.804 6 2450.00 9.00 -6376.317 2732.629 2740.686 7.33 2748.01 .00 14.00 9.000 14.000 .00 0 122 954 96 8 06 7 49 .0100 0078 1.35 015 0.0 0.0 BOX W S P G W - CIVILDESIGN Version 14.08 ♀ FILE: MAIN1.WSW PAGE

Program Package Serial Number: 7044
WATER SURFACE PROFILE LISTING

Date: 3- 3-2016 Time:10: 3:30

THE SEVENTY
GCW INC. PROJECT# 840.050

FILENAME: MAIN1.WSW JAM Depth Water Energy Super |Critical|Flow Top|Height/|Base Wt Invert (CFS) ZL Station Elev (FT) Elev (FPS) Head Grd.El. Elev Depth Width Dia.-FT or I.D. Prs/Pip Ch Slope SF Ave HF SE Dpth Froude N Norm Dr Type Ch L/Elem 9.000 14.000 0 -6253.363 2733.859 8.450 2742.308 2450.00 20.71 6.66 2748.97 .00 9.00 14.00 .00 1.26 7.49 .015 BOX 61.743 .0100 .0069 .42 8.45 .00 .00 WARNING - Flow depth near top of box conduit .00 0 2734.476 -|- -8.862 2743.338 2450.00 19 75 2749.39 .00 0 -6191.620 6.06 9.00 14.00 9.000 14.000 . 0 .0063 .08 1.17 7.51 .015 12,660 .0100 8.86 .00 .00 BOX

MAIN1.OUT
------ WARNING - Flow depth near top of box conduit -9.000 2743.602 2450.00 19.44 5.87 2749.47 .00
-|- -|- -|- -|- -|- .0064 .03 9.00 0 9.00 14.00 9.000 14.000 -6178.960 2734.602 -|- -|- -|-JUNCT STR .0098 .0064 .03 9.00 1.14 50 2734.651 -|-2750.43 .00 00 15.78 3.87 15.000 -6173.960 15.00 .16 15.000 11.822 2746.724 2130.00 15.78 -|- -|- -|-3.87 2750.59 -|-.0064 .07 .07 .00 8.56 15.00 9.000 .07 | 11.82 3.87 2750.66 .00 .015 .00 . 93 6.34 .00 вох .00 00 15.78 -|--6138.290 2735.004 -|- - -80.110 .0099 2130.00 .00 .00 8.56 -|-.00 .93 0 .0 9.000 11.786 2746.790 15.00 15.000 -|- -|-.0064 .51 .015 6.33 BOX ♀ FILE: MAIN1.WSW W S P G W - CIVILDESIGN Version 14.08
Program Package Serial Number: 7044
WATER SURFACE PROFILE LISTING

Date: 3- 3-2016 Time:10: 3:30

THE SEVENTY GCW INC. PROJECT# 840.050

			FILENAM	E: MAIN1.WS	MAL WE										
*****	******	******	******	******	******	******	******	******	*******	*******	*******	*******	*****	*****	***
Chap:	Invert	Depth	Water	Q (GRG)	Vel	Vel	Energy		Critical					No W	
Station	Elev	(FT)	Elev	(CFS)	(FPS)	Head	Grd.El.	Elev	Depth	Width	DiaFT	or I.D.	ZL	Prs/	Pip
L/Elem	Ch Slope	-	-		1	SF Ave	HF	CF Doth	Froude N	Norm Do	"N"	X-Fall	ZR	Type	Ch
		******	******	******	 ******		******	******	******	******				14be	
-6058.180	2735.797	12.026	2747.823	2130.00	15.78	3.87	2751.69	.00	8.56	15.00	9.000	15.000	.00	0	.0
244.970	.0099		-			.0064	1.57	12.03	.93	6.33	.015	.00	.00	BOX	
211.570	1	1	1	F	Ì	.0001	1.57	1	1	1	1			I	
-5813.210	2738.222	11.166	2749.388	2130.00	15.78	3.87	2753.25	.00	8.56	15.00	9.000	15.000	.00	0	.0
_													-	1-	
54.020	.0099					.0064	.35	.00	.93	6.33	.015	.00	.00	BOX	
					1			1	1	1	l		10000		1919
-5759.190	2738.757			2130.00			2754.03	.00	8.56	15.00	9.000	15.000	.00	. 0	.0
-		-											-	-	
TRANS STR	.0099			r	1	.0032	.04	11.41	.93	1	.015	.00	.00	BOX	
-5747.190	2738.876	13 460	2752.336	2130.00	11.83	2.17	2754.51	.00	7.06	20.00	9.000	20.000	.00	1	. 0
-	I	1			11			1	1	1	1	l I	l -	1-	
49.000	.0099	1			,	.0032	.15	13.46	.70	4.89	.015	.00	.00	BOX	
		1		I .	1			1	I	1		1	1	1	
-5698.190	2739.361	13.129	2752.490	2130.00	11.83	2.17	2754.66	.00	7.06	20.00	9.000	20.000	.00	. 0	.0
						- 1-1							-1	-	
Ŷ.															

MAIN1_FAC3-5.WSW

Т1	THE	C 1771	∨יייזאי							
T2				# 040 OF	1					
			C. PROJECT							
T3			ME: MAIN1_F		SW F	RRD				
SO	-61	76.4	602735.940	72			2746.562			
R	-61	25.5	202738.258	72	.013			35.000	.000	1
R	-59	52.9	902747.740	72	.013			23.000	.000	1
R	-57	43.8	102759.237	72	.013			13.000	.000	1
R	-55	87.2	202760.774	72	.013			.000	.000	1
JX	-55	82.2	202760.823	72 48		20.000	2760.800	50.0		0.000
R	-53	79.4	202762.815	72	.013			-58.000	.000	1
R	-52	86.5	602763.873	72	.013			.000	.000	0
SH	-52	86.5	602763.873	72			2773.753			
CD	18	4		1.500						
CD	24	4		2.000						
CD	30	4		2.500						
CD	36	4		3.000						
CD	42	4		3.500						
CD	48	4		4.000						
CD	54	4		4.500						
CD	60	4		5.000						
CD	72	4		6.000						
Q			344.000	. 0						

MAIN1_FAC3-5.OUT ♀ FILE: MAIN1 FAC3-5.WSW

W S P G W - CIVILDESIGN Version 14.08 Program Package Serial Number: 7044
WATER SURFACE PROFILE LISTING

THE SEVENTY

GCW INC. PROJECT# 840.050

FILENAME: MAIN1_FAC3-5.WSW RRD |Critical|Flow Top|Height/|Base Wt Depth Water Vel Vel Super No Wth Invert Energy Elev Station Elev (FT) (CFS) (FPS) Head Grd.El. Elev Depth Width Dia.-FT or I.D. ZL Prs/Pip L/Elem Ch Slope SF Ave HF SE Doth Froude N Norm Dp X-Fall ZR Type Ch .00 -6176.460 2735.940 10 622 2746 562 364 00 12.87 2.57 2749 14 0.0 5.15 .00 6.000 000 0 0 4.306 .0455 .0074 .03 .00 .00 2.65 .013 .00 .00 PIPE -6172.154 10.495 2746.631 12.87 .00 0 2736.136 364.00 2.57 2749.20 5.15 .00 6.000 .000 .00 .0 HYDRAULIC -6172.154 2738.771 30.45 2753.17 2.06 5.15 5.96 6.000 .000 .00 0 2736.136 14.40 46.634 .0455 .0465 2.17 4.69 3.79 2.65 013 .00 .00 PTPE .00 -6125.520 2738.258 2 631 2740.890 364 00 30.51 14 45 2755 34 .40 5.15 5.95 6.000 000 0 .0550 .0440 2.51 .013 104.458 4.59 3.03 3.80 .00 .00 PIPE -6021.062 2743.999 2.723 2746.722 364.00 29.17 13.21 2759.93 .37 5.15 5.97 6.000 .000 .00 0 .013 68.071 .0550 .0388 3.09 .00 .00 .00 -5952.991 2747.740 2750.565 27.81 12.01 6.000 .000 0 2762.57 .0550 28.109 .0351 .99 2.98 2.51 .013 . 00 .00 PIPE .15 6.00 6.000 0 -5924.882 2749.285 2.883 2752.168 364.00 27.08 11.39 2763.56 5.15 .000 .00 .0550 .0318 1.27 2.51 .013 .00 39.964 3.03 .00 PIPE -5884.918 2751.481 2754.475 25.82 10.36 2764.83 .13 6.00 6.000 .000 .00 0 364.00 5.15 0280 2.51 013 .00 -5854.224 2753.168 3.107 2756.276 364.00 24.62 9.41 2765.69 .12 5.15 6.00 6.000 .000 .00 0 - | -- | -

> Program Package Serial Number: 7044 WATER SURFACE PROFILE LISTING

.0247

W S P G W - CIVILDESIGN Version 14.08

Date: 3- 3-2016 Time:10: 8: 0 THE SEVENTY

3.23

2.51

.013

.00

.00 PIPE

2.76

.60

GCW INC PROJECT# 840 050 FILENAME: MAIN1_FAC3-5.WSW

.0550

file: MAIN1_FAC3-5.WSW

24.267

****** ****** **** Depth Energy Super |Critical|Flow Top|Height/|Base Wt No Wth Station Elev (FT) Elev (CFS) (FPS) Head Grd.El Elev Depth Width Dia.-FT or I.D. ZL Prs/Pip SF Ave L/Elem Ch Slope SE Dpth Froude N Type Ch 0 -5829.957 2754.502 3.228 2757.730 364.00 23.48 8.56 2766.29 .11 5.15 5.98 6.000 .000 .00 .0 2.51 .013 .0218 2.57 19.644 .0550 .43 3.34 .00 .00 PIPE -5810.313 2755.582 2758.936 22.38 .10 5.15 5.96 6.000 .000 .00 0 PIPE 0550 .0192 31 2.51 .013 .00 .00 3.488 .00 -5794.272 2756.463 2759.951 364.00 21.34 7 07 2767 02 .09 5.15 5.92 6.000 .000 0 .013 13.222 .0550 .0170 .22 2.51 3.58 2.22 .00 .00 PIPE 0 2760.819 20.35 6.000 -5781.050 2757.190 364.00 6.43 2767.25 .08 5.15 5.87 .000 .00 10.886 .0150 .16 2.51 .013 .00 .00 5.85 -5770.164 2757.789 2761.568 19.40 2767.41 .07 5.79 6.000 .000 .00 0 364.00 1.90 8.948 .0550 .0133 .12 3.85 2.51 .013 .00 .00 PTPE 2767.53 .07 6.000 0 -5761 216 2758 280 3 938 2762 218 364 00 18.50 5 31 5.15 5.70 .000 0.0 2.51 .0119 .09 .013 .00 7.240 .0550 4.00 1.75 .00 PIPE -5753.976 2758.678 4.109 2762.787 364.00 17.64 4.83 2767.62 .06 5.15 5.57 6.000 .000 .00 0 0106 2.51 .013 6.000 -5748.207 2758.995 4.292 2763.287 364.00 16.82 4.39 2767.68 .05 5.41 .000 .00 0 4 396 0550 0094 04 4.34 1.48 2.51 013 0.0 0.0 PTPE -5743.810 2759.237 4.491 2763.729 364.00 16.03 3.99 2767.72 .00 5.15 5.21 6.000 .000 .00 0 -|-88.742 LF .0098 .76 .0086 4.49 1.35 4.32 .013 PIPE .00 .00 W S P G W - CIVILDESIGN Version Program Package Serial Number: 7044 FILE: MAIN1_FAC3-5.WSW PAGE

WATER SURFACE PROFILE LISTING

Date: 3- 3-2016 Time:10: 8: 0

PAGE

Date: 3- 3-2016 Time:10: 8: 0

THE SEVENTY

GCW INC. PROJECT# 840.050
FILENAME: MAIN1_FAC3-5.WSW

RRD Energy Grd.El Super Elev Invert Depth Water Vel Vel |Critical|Flow Top|Height/|Base Wt No Wth (CFS) (FPS) ZL Station Elev (FT) Head Depth Width Dia.-FT or I.D. Elev Prs/Pip SF Ave SE Dpth Type Ch -5655.068 2760.108 2768.48 6.000 0 2764.750 364.00 15.51 3.73 .00 5.02 .000 .00 .0079 .013 53.658 4.32 .00 .00 PIPE -5601.410 2760.635 4.878 2765.513 364.00 14.78 2768.91 6.000 .000 0 14.190 .0098 .0072 .10 4.88 4.32 .013 .00 .00 PIPE 2769 01 .00 4.18 6.000 0 -5587 220 2760.774 5.150 2765 924 364.00 14.09 3.08 5.15 000 0.0 .014 JUNCT STR .0098 .0078 5.28 1.00 .00 PIPE .04 .00 -5582.220 2760.823 6.201 2767.024 344.00 12.17 2.30 2769.32 .00 5.03 .00 6.000 .000 0 .00 .013 -5379.420 2762.815 6.031 2768.846 344.00 12.17 2.30 2771.15 .00 5.03 6.000 .000 .00 0 .00 6.556 .0114 .0066 . 04 6.03 .00 3.92 .013 .00 PTPE -5372.864 2762.890 6.000 2768.890 344.00 12.17 2.30 2771.19 .00 5.03 .00 6.000 .000 .00 0 .013 53.905 .0114 .0061 .33 6.00 .00 3.92 .00 .00 PIPE -5318.959 2763.504 5.555 2769.059 344.00 12.59 2771.52 .00 3.14 6.000 .000 .00 0 .0 HYDRAULIC JUMP -5318.959 2763.504 4.533 2768.037 344.00 15.01 3.50 2771.54 .00 5.03 5.16 6.000 .000 .00 0 3.125 .0114 .0078 .02 4.53 1.25 3.92 .013 .00 .00 PIPE -5315.834 2763.540 4.551 2768.091 344.00 14.95 3.47 2771.56 .00 5.03 5.14 6.000 .000 .00 0 .0 22.388 .0114 .0074 .013 4.55 3.92 PIPE .00 .00 file: Main1_FAC3-5.WSW W S P G W - CIVILDESIGN Version 14.08 PAGE

Program Package Serial Number: 7044
WATER SURFACE PROFILE LISTING

Date: 3- 3-2016 Time:10: 8: 0

THE SEVENTY
GCW INC. PROJECT# 840.050

FILENAME: MAIN1_FAC3-5.WSW PPD Invert Depth Water 0 Vel Vel Energy Super |Critical|Flow Top|Height/|Base Wt| No Wth (CFS) Depth Prs/Pip Norm Dp Ch Slope L/Elem SF Ave HF SE Dpth Froude N "N" X-Fall ZR Type Ch 0 .00 6.886 .0114 .0067 .05 4.78 1.12 3.92 .013 .00 PIPE 2771.77 5.03 -5286.560 2763.873 5.031 2768.904 344.00 13.59 2.87 .00 4.42 6.000 .000 .00 0

MAIN1_FAC4.WSW

T1	THE SEVENTY	
T2	GCW INC. PROJECT# 840.050	
T 3	FILENAME: MAIN1 FAC4.WSW RRD	
SO	-5582.3902760.799 48	2767.024
R	-5294.8702762.238 48 .013	-58.000 .000 1
R	-5198.7702762.718 48 .013	.000 .000 0
SH	-5198.7702762.718 48	2764.678
CD	18 4 1.500	
CD	24 4 2.000	
CD	30 4 2.500	
CD	36 4 3.000	
CD	42 4 3.500	
CD	48 4 4.000	
CD	54 4 4.500	
CD	60 4 5.000	
CD	72 4 6.000	
Q	23.000 .0	

f FILE: MAIN1_FAC4.WSW

MAIN1_FAC4.OUT
W S P G W - CIVILDESIGN Version 14.08
Program Package Serial Number: 7044 WATER SURFACE PROFILE LISTING

Date: 3- 3-2016 Time:10: 8:20

PAGE

THE SEVENTY GCW INC. PROJECT# 840.050

FILENAME: MAIN1 FAC4.WSW RRD Invert Elev Depth (FT) Water Vel Vel Energy Grd.El. Super | Critical | Flow Top | Height / | Base Wt | Elev | Depth | Width | Dia.-FT | or I.D. | |No Wth |Prs/Pip Vel Vel (FPS) Head - -|- -SF Ave ****** Elev (CFS) Station L/Elem Ch Slope SE Dpth Froude N Type Ch -5582.390 2760.799 .05 2767.08 .00 4.000 .000 .00 0 .00 287.520 .0050 .0003 .07 .013 .00 .00 PIPE 4.871 71 2767.109 -|--5294.870 2762.238 .05 .00 0 .0 23.00 1.83 2767.16 .00 .000 .00 |-PIPE 00.00 .0050 .0003 .02 4.87 96.100 .00 1.29 .013 .00 1 1 -5198.770 2762.718 4.415 2767.133 2767.19 .00 1.41 4.000 0 .0 .05 .00 .000 .00 23.00 1.83

Page 1

MAIN1_FAC6.WSW

T1	THE SEVENTY		_		
T2	GCW INC. PROJECT# 8	40.050			
T3	FILENAME: MAIN1 FAC	6.WSW RRD			
so	-6176.4602735.570 72		2746.562		
R	-6144.3102736.331 72	.013		60.000	.000 1
R	-5744.3102751.051 72	.013		-70.000	.000 1
R	-5616.7902752.326 72	.013		.000	.000 0
SH	-5616.7902752.326 72		2758.140		
CD	18 4	1.500			
CD	24 4	2.000			
CD	30 4	2.500			
CD	36 4	3.000			
CD	42 4	3.500			
CD	48 4	4.000			
CD	54 4	4.500			
CD	60 4	5.000			
CD		6.000			
Q	191.000 .0				

♀ FILE: MAIN1 FAC6.WSW

MAIN1_FAC6.OUT W S P G W - CIVILDESIGN Version 14.08 Program Package Serial Number: 7044 WATER SURFACE PROFILE LISTING

Date: 3- 3-2016 Time:10: 8:40

THE SEVENTY GCW INC. PROJECT# 840.050

FILENAME: MAIN1_FAC6.WSW RRD |Critical|Flow Top|Height/|Base Wt| Invert Depth Water 0 Vel Vel Energy Super No Wth Station Elev (CFS) (FPS) Head Grd.El. Elev Depth Width Dia.-FT or I.D. ZL Prs/Pip "N" L/Elem Ch Slope SF Ave HF SE Dpth Froude N Norm Do X-Fall ZR Type Ch -6176.460 2735.570 2746.562 191.00 .71 2747.27 .00 .00 6.000 .000 .00 0 .00 32.150 .0237 .0020 .07 .00 2.23 .013 .00 .00 PIPE 0 -6144.310 2736.331 2746.779 191.00 .71 .00 .00 6.000 -000 10.447 6.76 2747.49 3.77 .00 . 0 115.765 .0020 .013 PIPE .0368 .24 .00 .00 1.98 .00 .00 .00 -6028.545 2740.591 2747.085 191.00 6.76 2747.79 3.77 .00 6.000 .000 .00 0 .0 HYDRAULIC JUMP -6028.545 2740.591 2.060 2742.651 191.00 22.24 7.68 2750.33 .27 3.77 5.70 6.000 .000 .00 0 .0368 .0305 2.33 3.19 1.98 .013 62.479 1.90 .00 .00 PIPE -5966.065 2742.890 2744.992 191.00 21.62 7.26 2752.25 .25 3.77 5.72 6.000 .000 .00 0 . 0 62.731 .0368 .0275 1.72 2.36 3.07 1.98 .013 .00 .00 PIPE -5903.334 2745.199 6.000 0 41.063 .0368 0241 .99 2.87 1.98 .013 .00 .00 PIPE 21 5.81 6.000 0 -5862 271 2746.710 2.255 2748.965 191.00 19.66 6.00 2754 96 3.77 000 0.0 29.630 .0368 .0211 .63 2.47 2.68 1.98 .013 .00 PIPE .00 -5832.641 2747.800 2750.136 18.74 5.45 2755.59 .19 6.000 .000 .00 0 191.00 3.77 5.85 2.336 .0 .00 .00 PIPE 00 17.87 -|-2748.628 -|- -23 .0368 -5810.147 2.421 2751.049 191.00 4.96 2756.01 .18 3.77 5.89 6.000 .000 .00 0 17 623 0163 29 2 60 2.34 1.98 .013 .00 .00 PIPE W S P G W - CIVILDESIGN Version 14.08 FILE: MAIN1 FAC6.WSW PAGE

Program Package Serial Number: 7044 WATER SURFACE PROFILE LISTING

Date: 3- 3-2016 Time:10: 8:40

PAGE

1

THE SEVENTY GCW INC. PROJECT# 840.050 FILENAME: MAIN1_FAC6.WSW

FILENAME: MAINI_FACO.WSW RKU												**			
	Invert	Depth	Water	Q	Vel	Vel	Energy	Super	Critical	Flow Top	Height/	Base Wt		No Wt	h
Station	Elev	(FT)	Elev	(CFS)	(FPS)	Head	Grd.El.	Elev	Depth	Width	DiaFT	or I.D.	ZL	Prs/P	ip
		-													~ 1
L/Elem	Ch Slope	******	******	******	******	SF Ave	HF	SE DPtn	Froude N		"N"	X-Fall	ZR ****	Type	
	1														
-5792.524	2749.277	2.510	2751.787	191.00	17.04		2756.29	.16	3.77	5.92	6.000	.000	.00	0	.0
		-												1	
14.117	.0368		F 1	1		.0143	.20	2.67	2.18	1.98 I	.013	.00	.00	PIPE	
-5778.407	2749.796	2.602	2752.398	191.00	16.24	4.10	2756.50	.15	3.77	5.95	6.000	.000	.00	0	. 0
-	-	-											-	-	
11.405	.0368			9	r.	.0126	.14	2.75	2.04	1.98	.013	.00	.00	PIPE	
-5767.002	2750.216	2.698	2752.914	191.00	15.49	3.73	2756.64	.14	3.77	1 5.97	6.000	.000	.00	0	. 0
-	-							•						I-	
9.224	.0368					.0110	.10	2.83	1.90	1.98	.013	.00	.00	PIPE	
5353 330	2250 555	2 700	2752 254	701 00	14 77	3.39	2756 74	.12	3.77	5.99	6.000	.000	0.0	1	•
-5757.779	2750.555	2.799	2753.354	191.00	14.77				F AND DE SECTION 1			.000 	.00	0 I -	. 0
7.487	.0368			(1	,	.0097	.07	2.92	1.77	1.98	.013	.00	.00	PIPE	
	1				The second						I				
-5750.292	2750.831	2.904		191.00	14.08	3.08	2756.81	.11	3.77	6.00	6.000	.000	.00	0	. 0
5.981	.0368	-	[]			.0085	.05	3.02	1.65	1.98	.013	.00	.00	PIPE	
0.202	1						1							1	
-5744.311		3.015		191.00	13.43	2.80		.00	3.77	6.00	6.000	.000	.00	. 0	.0
45.678	.0100	-				.0076	.35	3.01	1.54	2.83	.013			PIPE	
45.676	1 .0100		f I	11	ř.	.0076		3.01	1.54	2.63	1 .013	.00	.00	PIPE	
-5698.632	2751.508	3.102	2754.610	191.00	12.95	2.60	2757.21	.00	3.77	6.00	6.000	.000	.00	0	.0
-	-	-											-	1-	
36.952	.0100			1		.0068	.25	3.10	1.46	2.83	.013	.00	.00	PIPE	
-5661.681	2751.877	3.222	2755.099	191.00	12.35	2.37	2757.47	.00	3.77	5.98	6.000	.000	.00	0	. 0
-	-						- california ou servicioni	•						1-	
22.494	.0100					.0060	.14	3.22	1.35	2.83	.013	.00		PIPE	
-5639.187	2752.102	3.348	2755.450	191.00	11.77	2.15	2757.60	.00	3.77	5.96	6.000	ا ممما	0.0	1	•
	-							•				.000 	.00	0 I -	.0
13.408	.0100		18			.0053	.07	3.35	1.26	2.83	.013	.00		PIPE	
우 FILE: MAI	N1_FAC6.WSW						SIGN Version	on 14.08]	PAGE	3
			Program	Package Se	rial Num	per: 704	14								

Program Package Serial Number: 7044 WATER SURFACE PROFILE LISTING

Date: 3- 3-2016 Time:10: 8:40

MAIN1_FAC6.OUT

THE SEVENTY
GCW INC. PROJECT# 840.050
FILENAME: MAIN1_FAC6.WSW

			FILENAME	S: MAINI_FA	AC6.WSW	RRD									
******	******	******	*******	*******	******	******	******	******	******	******	******	*******	*****	*****	**
	Invert	Depth	Water	Q	Vel	Vel	Energy		Critical					No Wt	
Station	Elev	(FT)	Elev	(CFS)	(FPS)	Head	Grd.El.	Elev	Depth	Width	DiaFT	or I.D.	ZL	Prs/F	?ip
_													-1 -		
L/Elem	Ch Slope	Ì	1		1	SF Ave	HF	SE Dpth	Froude N	Norm Dp	"N"	X-Fall	ZR	Type	Ch
******	******	******	*******	******	******	******	******	*****	******	******	******	******	****	****	***
	i	i	i		i '			i	İ	İ	i		į	i	
-5625.779	2752.236	3.481	2755.717	191.00	11.22	1.96	2757.67	.00	3.77	5.92	6.000	.000	.00	. 0	. 0
-	l	1	I		I - I		-	1	1	I	I	I	I -	1-	
6.968	.0100		1	[m	1	.0047	.03	3.48	1.17	2.83	.013	.00	.00	PIPE	
0.300	1 .0100	T.	i i	1	t	.0017	. 05	J.40	1	1	1 .015		1	I	
5610 011	0750 200	2 500	0000	101 00	10.70	1 70	0000 01	1	3.77	5.87	6.000	.000	1 00	1	^
-5618.811	2752.306	3.622	2755.928	191.00	10.70	1.78	2757.71	.00	3.//	5.87	6.000	.000	.00	, 0	.0
-							-	-	-	-	-		1 -	1-1	
2.021	.0100					.0042	.01	3.62	1.08	2.83	.013	.00	.00	PIPE	
		Į.	1		1			1	1	1				1	
-5616.790	2752.326	3.773	2756.099	191.00	10.20	1.62	2757.71	.00	3.77	5.80	6.000	.000	.00	0	.0
-														1-	

MAIN1_FAC8A.WSW

T1	THE	SEVE	ENTY			_			
T2	GC	II W	NC. PROJECT	# 840.05	50				
T 3	FI	LENA	AME: MAIN1	FAC8A.WS	SW SHT				
SO	67	60.4	1802731.530	48		2736.8	63		
R	68	36.4	1802742.000	48	.013			0.000	.000 0
SH	68	36.4	1802742.000	48		.00	0		
CD	18	4		1.500)				
CD	24	4		2.000)				
CD	30	4		2.500)				
CD	36	4		3.000)				
CD	42	4		3.500)				
CD	48	4		4.000)				
CD	54	4		4.500)				
CD	60	4		5.000)				
CD	72	4		6.000)				
Q			34.000	. 0					

♀ FILE: MAIN1_FAC8A.WSW

₽ FILE: MAIN1 FAC8A.WSW

MAIN1_FAC8A.OUT W S P G W - CIVILDESIGN Version 14.08 Program Package Serial Number: 7044 WATER SURFACE PROFILE LISTING

WATER SURFACE PROFILE LISTING Date: 3- 3-2016 Time:10: 8:56

THE SEVENTY
GCW INC. PROJECT# 840.050

FILENAME: MAIN1_FAC8A.WSW SHT |Critical|Flow Top|Height/|Base Wt Invert Depth Water 0 Vel Vel Energy Super No Wth (CFS) Head Grd.El. Elev Depth Width Dia.-FT or I.D. ZT. Prs/Pip L/Elem "N" Ch Slope SF Ave HF SE Dpth Froude N Norm Dp X-Fall ZR Type Ch 6760.480 2731.530 2736.863 .11 2736.98 .00 .00 4.000 .000 .00 0 .00 .68 9.716 .1378 .0006 .01 5.33 .013 .00 .00 PIPE 0 - 00 .00 4.000 .000 .00 6770.196 2732 868 4 000 2736.868 34 00 2.71 .11 2736.98 1.73 . 0 .0005 .68 .013 .00 PIPE 2.612 .1378 .00 4.00 .00 .00 .000 0 2733.228 2736.857 2.84 .13 2736.98 .00 1.73 2.32 4.000 .00 6772.808 3.629 34.00 .0 .630 .00 .013 .00 .00 PIPE 6773.438 2733.315 2736.854 34.00 2.89 .13 2736.98 .00 2.56 4.000 .000 .00 0 HYDRAULIC JUMP 6773 438 6.82 2740.88 .00 1.73 3.12 4.000 .000 .00 0 . 0 2733 315 747 2734 . 063 34.00 20.95 .013 .0931 .57 .75 5.12 .68 .00 .00 PIPE 6.132 .1378 4.000 .000 .00 0 6779.571 2734.160 2734.919 10.557 .1378 .0843 .89 .76 4.95 .68 .013 .00 .00 PIPE 0 4 000 6790.128 2735.614 2736.399 34.00 19.50 5.91 2742.31 .00 1.73 3.18 000 0.0 0 .0737 .59 .68 .013 .00 .00 PIPE 7.956 .1378 .79 4.64 4.000 .000 .00 0 6798.083 2736.710 2737.522 5.37 2742.89 .00 1.73 3.22 .812 34.00 18.60 .0 .013 .00 .00 .0644 .81 6.283 .1378 2738.415 4.88 2743.30 .00 1.73 3.26 4.000 .000 .00 0 6804.367 2737.575 5.088 .1378 0562 29 84 4.07 .68 .013 .00 0.0 PTPE

Program Package Serial Number: 7044
WATER SURFACE PROFILE LISTING

W S P G W - CIVILDESIGN Version 14.08

Date: 3- 3-2016 Time:10: 8:56

PAGE

PAGE

THE SEVENTY
GCW INC. PROJECT# 840.050

FILENAME: MAIN1_FAC8A.WSW SHT

******	******	******	******	******	******	*****	*****	*****	******	*****	******	******	****	*****	**
	Invert	Depth	Water	0	Vel	Vel	Energy	Super	Critical	Flow Top	Height/	Base Wt		No Wt	h
Station	Elev	(FT)	Elev	(CFS)	(FPS)	Head	Grd.El.	Elev	Depth	Width	DiaFT	or I.D.	ZL	Prs/P	ip
-															-
L/Elem	Ch Slope					SF Ave	HF	SE Dpth	Froude N	Norm Dp	"N"	X-Fall	ZR	Type	Ch
******	******	*****	******	******	******	*****	******	*****	******	******	******	*****	****	****	**
	İ							l			1				
6809.455	2738.276	.868	2739.145	34.00	16.91	4.44	2743.58	.00	1.73	3.30	4.000	.000	.00	0	.0
-	- :-												-	-	
4.226	.1378					.0492	.21	.87	3.81	.68	.013	.00	.00	PIPE	
					ľ				1	1					
6813.681	2738.859	.897	2739.756	34.00	16.12	4.03	2743.79	.00	1.73	3.34	4.000	.000	.00	0	.0
-													-	-	
3.542	.1378					.0430	.15	.90	3.57	.68	.013	.00	.00	PIPE	
								Į.							
6817.223	2739.347	.928	2740.275	34.00		3.67	2743.94	.00	1.73	3.38	4.000	.000	.00	. 0	. 0
-										l- -			-	-	
3.009	.1378			•		.0376	.11	. 93	3.35	.68	.013	.00	.00	PIPE	
							l	1						l _	-
6820.232	2739.761	.960		34.00		3.33	• Company of the contract of t	.00	1.73	3.42	4.000	.000	.00	. 0	.0
				-									-	-	
2.575	.1378				r.	.0329	.08	.96	3.13	.68	.013	.00	.00	PIPE	
	2740.116	. 993	2741.109	34.00	13.97	3.03	2744.14	.00	1.73	3.46	4.000	.000	.00	0	. 0
6822.807	2/40.116						2/44.14			3.46			.00	1	. 0
2.216	.1378					.0287	.06	.99	2.93	.68	.013	.00	.00	PIPE	
2.216	.13/8			1	F	.0267	.06		2.93	1	1 .013	.00	.00	PIPE	
6825.023	2740.421	1.027	2741.448	34.00	13.32	2.76	2744.20	.00	1.73	3.49	4.000	.000	.00	0	. 0
										I			00	1 -	. 0
1.914	.1378					.0251	.05	1.03	2.75	.68	.013	.00	.00	PIPE	
1.711	1 .13,0	I	ľ	F.	ĺ	.0252	1	1	1	1	1			1	
6826.937	2740.685	1.062	2741.747	34.00	12.70	2.51	2744.25	.00	1.73	3.53	4.000	.000	.00	0	.0
-				I									-	-	
1.647	.1378					.0220	.04	1.06	2.57	.68	.013	.00	.00	PIPE	
	1	I	l	1	I		1	Ĭ	1						
6828.584	2740.912	1.099	2742.011	34.00	12.11	2.28	2744.29	.00	1.73	3.57	4.000	.000	.00	0 -	. 0
													-	-	
1.426	.1378					.0192	.03	1.10	2.41	.68	.013	.00	.00	PIPE	
	l		[ſ	1		1		1						
6830.010	2741.108	1.137	2742.246	34.00	11.55	2.07	2744.32	.00	1.73	3.61	4.000	.000	.00	0	. 0
-							-			[-	-	
1.226	.1378			-		.0168	.02	1.14	2.25	.68	.013	.00		PIPE	
우 FILE: MAI	N1_FAC8A.W	ISW		WS	PGW-	CIVILDES	SIGN Versio	on 14.08					I	PAGE	3

Program Package Serial Number: 7044
WATER SURFACE PROFILE LISTING

Date: 3- 3-2016 Time:10: 8:56

THE SEVENTY
GCW INC. PROJECT# 840.050

FILENAME: MAIN1_FAC8A.WSW Water Energy Grd.El. Super | Critical | Flow Top | Height / Base Wt | Elev | Depth | Width | Dia.-FT | Or I.D. Invert Depth Q (CFS) Vel Vel No Wth (FPS) ZL Station Head Depth Prs/Pip Elev Elev SF Ave L/Elem Ch Slope SE Dpth Type Ch 0 2741.277 4.000 6831.236 34.00 11.01 1.88 2744.34 .00 1.73 3.65 .000 .00 .0147 2.11 .013 .00 PIPE 1.058 .1378 .02 .68 .00 6832.293 2742.641 10.50 2744.35 4.000 .000 .00 0 .901 .1378 .0129 .01 1.22 1.97 .013 .00 .00 PIPE 2744 36 0.0 1 73 3 72 4 000 000 0 6833.195 2741.547 1.261 2742.808 34.00 10.01 1.56 0.0 .013 .0113 .01 1.26 1.84 .68 .00 .00 PIPE .770 .1378 2742.959 9.54 1.41 2744.37 .00 1.73 3.75 4.000 .000 .00 0 6833.965 2741.654 1.305 34.00 .01 .013 .646 6834.610 2743.094 9.10 1.29 2744.38 .00 3.78 4.000 .000 .00 0 .013 .534 .1378 .0087 .00 1.35 1.61 .68 .00 .00 PTPE .00 4.000 0 6835.144 2741.816 1.399 2743.215 34.00 8.68 1.17 2744.38 1.73 3.82 .000 .00 .0076 .013 .432 .1378 .00 1.40 1.51 .68 .00 .00 PIPE 0 2741.875 2743.325 8.27 2744.39 .00 3.85 4.000 .000 .00 6835.576 34.00 1.06 .0067 .00 .013 .00 .00 PIPE 6835.916 2741.922 1.501 2743.424 34.00 7.89 . 97 2744.39 .00 3.87 4.000 .000 .00 0 .013 .256 .1378 .0058 .00 1.50 1.32 .68 .00 .00 PIPE 6836.172 2741.958 1.555 2743.513 34.00 7.52 .88 2744.39 .00 1.73 3.90 4.000 .000 .00 0 -| .172 .1378 .0051 .00 .013 PIPE 1.56 1.23 .68 .00 .00 ♀ FILE: MAIN1_FAC8A.WSW PAGE

W S P G W - CIVILDESIGN Version 14.08
Program Package Serial Number: 7044
WATER SURFACE PROFILE LISTING

Date: 3- 3-2016 Time:10: 8:56

THE SEVENTY
GCW INC. PROJECT# 840.050

			FILENAME	E: MAIN1_F	AC8A.WSW	SHT									
******	******	******	*********	*******	******	******	******	*****	******	*****	*****	*****	*****	*****	**
	Invert	Depth	Water	Q	Vel	Vel	Energy	Super	Critical	Flow Top	Height/	Base Wt		No Wt	h
Station	Elev	(FT)	Elev	(CFS)	(FPS)	Head	Grd.El.	Elev	Depth	Width	DiaFT	or I.D.	ZL	Prs/P	ip
-					il			[-: -i				i		1	-
L/Elem	Ch Slope				i '	SF Ave	HF	SE Doth	Froude N	Norm Dp	"N"	X-Fall	ZR	Type	Ch
*****	*****	******	******	*****	******	******	*****	*****	******	******	******	******	****	****	
					i '			i	i	i	1	i		i	
6836.344	2741.981	1.612	2743.594	34.00	7.17	.80	2744.39	.00	1.73	3.92	4.000	.000	.00	0	. 0
-				I	1 1			1		l	I	I	-	1-	
.102	.1378				1	.0045	.00	1.61	1.15	.68	.013	.00	.00	PIPE	
	1	li i		1	ł	0.04 0.0		1	1	1	1	1	30,50,50		
6836.446	2741.995	1.671	2743.667	34.00	6.84	.73	2744.39	.00	1.73	3.95	4.000	.000	.00	0	. 0
-	I	l		I	11			1	l	I	I	I	-	1-	
.034	.1378					.0040	.00	1.67	1.07	.68	.013	.00	.00	PIPE	
	1	l.	1		1			1	1	1	1	1		1	
6836.480	2742.000	1.734	2743.733	34.00	6.51	.66	2744.39	.00	1.73	3.96	4.000	.000	.00	0	. 0
-	I	I		l	11			I	l	1	I	1	-	1-	
					1						I	1		1	

MAIN1_FAC8B.WSW

						-			
T1	THE	SEVE	NTY						
T2	GC	M IN	IC. PROJECT	# 840.050					
T3	FI	LENA	ME: MAIN1	FAC8B.WSW	SHT				
SO	-67	32.4	802731.530	48		273	6.863		
R	-66	56.4	802742.000	48	.013			0.000	.000 1
SH	-66	56.4	802742.000	48			.000		
CD	18	4		1.500					
CD	24	4		2.000					
CD	30	4		2.500					
CD	36	4		3.000					
CD	42	4		3.500					
CD	48	4		4.000					
CD	54	4		4.500					
CD	60	4		5.000					
CD	72	4		6.000					
Q			60.000	.0					

♀ FILE: MAIN1 FAC8B.WSW

MAIN1_FAC8B.OUT W S P G W - CIVILDESIGN Version 14.08 Program Package Serial Number: 7044
WATER SURFACE PROFILE LISTING

SHT

Date: 3- 3-2016 Time:10: 9:12

PAGE

THE SEVENTY GCW INC. PROJECT# 840.050 FILENAME: MAIN1 FAC8B.WSW

Invert Depth Water Vel Vel Energy Super |Critical|Flow Top|Height/|Base Wt| No Wth Prs/Pip Station (CFS) (FPS) Head Grd.El. Elev Depth Width Dia.-FT or I.D. ZT. Elev Type Ch L/Elem Ch Slope SF Ave HF SE Doth Froude N Norm Dp "N" X-Fall ZR 4.000 -6732.480 2731.530 2736.863 .35 2737.22 .00 .00 000 .00 0 .01 3.274 .1378 .0017 5.33 .00 .91 .013 .00 .00 PIPE .00 .00 .000 0 -6729 206 2731 981 4 888 2736 869 60.00 4.77 . 35 2737.22 2.33 4.000 .00 HYDRAULIC JUMP 0 2731.981 1.021 2733.003 60.00 23.70 8.72 2741.73 .00 2.33 3.49 4.000 .000 .00 -6729.206 .013 .00 .00 PIPE -6728.280 2732.109 1.024 2733.133 60.00 23.60 8.65 2741.78 .00 2.33 3.49 4.000 .000 .00 0 .013 12.813 .1378 .0791 1.01 1.02 4.87 . 91 .00 .00 PIPE 22.50 7.86 2742.80 .00 2.33 4.000 .000 0 -6715.467 2733.874 1.059 2734 933 60.00 3.53 .00 .0692 .68 .013 PIPE .1378 1.06 4.56 .91 .00 .00 9.890 4.000 0 -6705.577 2735.236 2736.333 1.10 7.927 .1378 .0606 .48 .91 .013 .00 .00 PIPE .00 -6697.650 2736.328 2737.462 60.00 20.46 6.50 2743 96 2 33 3.61 4 000 000 0.0 0 .1378 .0530 1.13 .013 PIPE 6.500 .34 4.00 .91 .00 .00 4.000 .000 2737.224 5.91 2744.31 .00 0 -6691.151 1.174 2738.398 60.00 19.50 2.33 3.64 .00 .00 5.431 .1378 2737.972 2739.187 5.37 .00 2.33 3.68 4.000 .000 .00 0 -6685.720 60.00 18.60 2744.56 4.594 1378 0406 19 1 22 3.50 91 013 0.0 0.0 PTPE P FILE: MAIN1 FAC8B.WSW W S P G W - CIVILDESIGN Version 14.08 PAGE

Program Package Serial Number: 7044 WATER SURFACE PROFILE LISTING

Date: 3- 3-2016 Time:10: 9:12

THE SEVENTY GCW INC. PROJECT# 840.050

FILENAME: MAIN1_FAC8B.WSW SHT Vel |Critical|Flow Top|Height/|Base Wt Depth Water Energy Super No Wth Invert Station Elev Elev (CFS) (FPS) Head Grd.El Elev Depth Width Dia.-FT or I.D. ZL Prs/Pip "N" SF Ave SE Doth Froude N X-Fall ZR L/Elem Ch Slope HF Norm Dp Type Ch -6681.126 2738.604 1.257 2739.862 60.00 17.73 4.88 2744 74 .00 2.33 3.71 4.000 .000 .00 0 . 0 3.913 .1378 .0356 .14 1.26 3.27 .91 .013 .00 .00 PIPE 2.33 4.000 .000 0 -6677.213 2739.144 1.301 2740.445 60.00 16.91 2744.88 .00 .00 4.44 3.75 .0312 .013 4.000 -6673.869 2739.604 1.348 2740.952 60.00 16.12 4.03 2744.99 .00 2.33 3.78 .000 .00 0 2 896 1378 .0273 . 08 1.35 2.86 . 91 .013 .00 .00 PIPE -6670.973 2740.003 1.395 2741.398 60.00 15.37 3.67 2745.07 .00 2.33 3.81 4.000 .000 .00 0 .1378 .0239 .06 2.68 .91 .013 .00 PIPE 2.490 1.40 .00 -6668.483 2740.346 2741.791 60.00 14.65 4.000 2.151 .1378 0210 .05 .013 .00 .00 PIPE -6666.332 2740.643 2742.140 60.00 13.97 3.03 2745 17 0.0 3.87 4.000 000 .00 0 .013 1.856 .1378 .0184 .03 1.50 2.34 .91 .00 .00 PIPE .00 2740.898 13.32 2.76 2745.21 2.33 4.000 .000 0 -6664.476 1.551 2742.449 60.00 3.90 .00 .0162 .013 .1378 .03 1.55 .00 .00 PIPE 1.600 2745.23 4.000 .000 -6662.876 2741.119 2742.726 60.00 12.70 2.51 .00 2.33 3.92 .00 .1378 .02 .013 .00 .00 PIPE -6661.510 2741.307 1.666 2742.973 60.00 12.11 2.28 2745.25 .00 2.33 3.94 4.000 .000 .00 0 1 166 1378 .0124 .01 1.67 1.90 .013 .91 -00 .00 PIPE file: MAIN1_FAC8B.WSW W S P G W - CIVILDESIGN Version

Program Package Serial Number: 7044 WATER SURFACE PROFILE LISTING

Date: 3- 3-2016 Time:10: 9:12

MAIN1_FAC8B.OUT

THE SEVENTY
GCW INC. PROJECT# 840.050
FILENAME: MAINL_FAC8B.WSW SHT

FILENAME: MAIN1_FAC8B.WSW SHT															
Station	Invert Elev	Depth (FT)	Water Elev	Q (CFS)	Vel (FPS)	Vel Head	Energy Grd.El.		Critical Depth		Height/ DiaFT		ZL	No Wt Prs/P	
L/Elem ******	Ch Slope	*****	*****	*****		SF Ave	- HF ******		Froude N		******	X-Fall *****	ZR ****	Type ****	
-6660.345	 2741.468 	 1.727 	2743.195 	60.00 	 11.55 		2745.27 	.00 	2.33	3.96 	4.000	.000	.00	-	.0
.979 -6659.365	.1378 2741.603		2743.394	60.00		1.88	.01 2745.28	1.73	1.78	.91 3.98	.013 4.000	.000	.00	PIPE	.0
.820	 .1378 	I	ľ	- 		.0096	 .01 	' 1.79 	 1.66 	 .91 	.013	 .00 	.00	PIPE	
-6658.545 - .662	2741.716 .1378	1.857	2743.573	60.00	The same and the same and the		2745.28 .01	.00 1.86	2.33 1.55	3.99 .91	4.000	.000 .00	.00 - .00	0 - PIPE	.0
-6657.883	 2741.807 	 1.927 	 2743.734 	 60.00 	 10.01 		 2745.29 	.00	2.33	 4.00 	4.000 	.000	.00 -	 -	.0
.525 -6657.358	.1378 2741.879	2.000	2743.879	60.00	9.54	1.41	.00 2745.29	1.93	1.44	.91 4.00	.013 4.000	.000	.00	PIPE 0	.0
.393	 .1378	 	 	 	 	.0066	 .00	 2.00	 1.34	 .91 	 .013	.00	- .00	- PIPE	
-6656.965 - .272	2741.933 .1378	2.077	2744.010	60.00 	9.10	1.29 .0058		.00 2.08	2.33	4.00 	4.000	.000	.00	0 - PIPE	.0
-6656.693	2741.971		2744.129	60.00	8.68 	1.17	2745.30	.00	2.33	3.99	4.000	.000	.00	1	.0
.160	.1378	i I		l	l .	.0051	' .00 I	2.16	1.16	.91	.013	.00	.00	PIPE	_
-6656.533 - .053	2741.993 .1378		2744.236	60.00	8.27		2745.30	.00 2.24	2.33	3.97 	4.000	.000	.00	O - PIPE	.0
-6656.480	 2742.000 		 2744.333 	 60.00 	 7.88 		 2745.30 	.00 	2.33 	 3.94 	4.000 	.000 	.00	 -	.0

MAIN1_FAC9A.WSW

T1	THE SEVENTY	<u> </u>
T2	GCW INC. PROJECT# 840.050	
T3	FILENAME: MAIN1 FAC9A.WSW SHT	
so		2725.405
R	-7078.2202721.390 24 .013	60.000 .000 1
R	-6805.9002728.200 24 .013	-60.000 .000 1
R	-6618.8802747.000 24 .013	0.000 .000 0
SH	-6618.8802747.000 24	.000
CD	18 4 1.500	
CD	24 4 2.000	
CD	30 4 2.500	
CD	36 4 3.000	
CD	42 4 3.500	
CD	48 4 4.000	
CD	54 4 4.500	
CD	60 4 5.000	
CD	72 4 6.000	
Q	6.000 .0	

♀ FILE: MAIN1 FAC9A.WSW

MAIN1_FAC9A.OUT W S P G W - CIVILDESIGN Version 14.08 ge Serial Number: 7044 Program Package Serial Number: 7044
WATER SURFACE PROFILE LISTING

SHT

Date: 3- 3-2016 Time:10: 9:29

PAGE

THE SEVENTY GCW INC. PROJECT# 840.050

FILENAME: MAIN1_FAC9A.WSW Vel Invert Depth Water 0 Vel Energy Super |Critical|Flow Top|Height/|Base Wt| No Wth Station (CFS) (FPS) Head Grd.El. Elev Depth Width Dia.-FT or I.D. 7.1. Prs/Pip L/Elem Ch Slope SF Ave HF SE Doth Froude N Norm Do "N" X-Fall ZR Type Ch -7116.380 2720.753 2725.405 .06 2725.46 .00 .00 2.000 000 .00 0 38.160 .0167 .0007 .03 .00 .00 .61 .013 .00 .00 PIPE 2.000 -7078.220 2721 390 2725 444 . 06 2725.50 .00 .87 .00 .000 0 4 054 6.00 1.91 .00 . 0 84.764 .0250 .013 PIPE .0007 .06 .00 .00 .55 .00 .00 2.000 0 -6993.457 2723.510 2.000 2725.510 6.00 1.91 .06 2725.57 2.00 .00 .000 .00 .0 .0007 .013 .00 .00 PIPE -6986.097 2723.694 2725.508 6.00 2.00 .06 2725.57 .00 .87 1.16 2.000 .000 .00 0 .00 .013 4.176 .0250 .0006 1.81 .22 .55 .00 .00 PIPE -6981.921 6.00 2.10 .07 2725.57 .00 .87 1.42 2.000 .000 .00 0 2723.798 1.706 2725.504 . 0 .0007 .00 1.71 .013 .00 .00 PIPE 3.337 .0250 .26 .55 2.000 .000 0 -6978.584 2723.882 2725.500 2.906 .0250 .0008 .00 1.62 .30 .55 .013 .00 .00 PIPE 2725.58 .00 2 000 0 -6975.679 2723.954 1.540 2725.494 6.00 2.31 0.8 .87 1 68 000 0.0 .0008 .00 1.54 .55 .013 .00 .00 PIPE 2.554 .0250 .33 2725.58 .00 .87 2.000 .000 0 -6973.125 2725.489 2.42 .09 1.77 .00 2724.018 1.470 6.00 .0 .00 .013 2.280 .0250 .0009 .00 .00 -6970.845 2724.075 2725.481 2.54 .10 2725.58 .00 .87 1.83 2.000 .000 .00 0 2.086 .0250 1 41 0011 0.0 .39 .55 .013 .00 00 PTPE ♀ FILE: MAIN1 FAC9A.WSW W S P G W - CIVILDESIGN Version 14.08 PAGE

Program Package Serial Number: 7044 WATER SURFACE PROFILE LISTING

Date: 3- 3-2016 Time:10: 9:29

THE SEVENTY GCW INC. PROJECT# 840.050

			FILENAME	: MAIN1_FA	C9A.WSW	SHT									
******	*******	******	*******	*******	******	******	*******	******	********* Critical	******	********	********	*****	***** No Wt	**
Station	Invert Elev	Depth (FT)	Water Elev	Q (CFS)	Vel (FPS)	Vel Head	Energy Grd.El.	Super Elev	Depth		DiaFT		ZL	Prs/F	
Station	Frev	(F1)	FIEV	(CFS)	l		GIU.EI.	FIEA	l	WIUCH	DIAFI	OI 1.D.		PIS/F	тЪ
L/Elem	Ch Slope		1		1	SF Ave	HF	SE Doth	Froude N	Norm Do	"N"	X-Fall	ZR	Туре	Ch
*****	******	******	******	******	*****			*****	******					****	
		İ	i	i				i	i	i	i	i		i	
-6968.759	2724.128	1.346	2725.474	6.00	2.67	.11	2725.58	.00	.87	1.88	2.000	.000	.00	0	.0
-			[]	1	[-	-	
1.686	.0250					.0012	.00	1.35	.43	.55	.013	.00	.00	PIPE	
		l	1 1									I		1	
-6967.073	2724.170	1.291		6.00	2.80		2725.58	.00	.87	1.91	2.000	.000	.00	. 0	.0
-							-						-	-	
HYDRAULIC	JUMP		1 1					1	1	1	1		1	ī	
-6967.073	2724.170	.554	2724.724	6.00	8.46	1 11	2725.83	.02	.87	1.79	2.000	.000	.00	0	. 0
-0507.075			The second in the second	1								I	l -	1-	. 0
15.837	.0250	,			Ĭ	.0250	.40	.57	2.37	.55	.013	.00	.00	PIPE	
	1	I	1 1					1	1	I	1	1	1	1	
-6951.236	2724.566	.554	2725.120	6.00	8.46	1.11	2726.23	.02	.87	1.79	2.000	.000	.00	0	.0
-]					-	1-	
50.984	.0250					.0256	1.31	.57	2.37	.55	.013	.00	.00	PIPE	
			1					F						1	
-6900.251				6.00	8.60	1.15	2727.54	.02	.87	1.78	2.000	.000	.00	. 0	.0
													-	-	
31.144	.0250		1 0			.0281	.88	.56	2.42	.55	.013	.00	.00	PIPE	
-6869.107	2726.619	.529	2727.148	6.00	9.02	1.26	2728.41	.02	.87	1.76	2.000	.000	.00	0	. 0
-6669.107	1]	1		l	1_	1-	. 0
15.202	.0250		1			.0321	.49	.55	2.59	.55	.013	.00	.00	PIPE	
13.202	1	1	I 3	. 1			1	1	1	1	1	1	1	1	
-6853.905	2727.000	.511	2727.510	6.00	9.46	1.39	2728.90	.02	.87	1.74	2.000	.000	.00	0	.0
-													-	1-	
10.409	.0250					.0367	.38	.53	2.77	.55	.013	.00	.00	PIPE	
			1					1]	1	1				
-6843.497	2727.260		2727.754	6.00	9.93	1.53	2729.28	.02	.87	1.73	2.000	.000	.00	. 0	.0
													-	-	
8.010	.0250					.0420	.34	.51	2.96	.55	.013	.00	.00	PIPE	
6035 435	0707 455	1	0707 007		10 41	1 60	2720 62	1	0.7	1 70	2 000	000	1	1	•
-6835.487	2727.460	.477		6.00	10.41	1.68	2729.62	.02	.87	1.70	2.000	.000	.00	0 1 -	. 0
6.659	.0250	-				.0480	.32	.50	3.16	.55	.013	.00	.00	PIPE	
子 FILE: MAI		a Cita		мс	DCW-		.32 SIGN Versio		3.16	.55	.013	.00		PAGE	3
T EIDE: MAJ	INI_FAC9A.V	NON.		W S	FGW -	CTATINES	TON ACTUR	DII T#.00						AGE	3

Program Package Serial Number: 7044 WATER SURFACE PROFILE LISTING

Date: 3- 3-2016 Time:10: 9:29

THE SEVENTY GCW INC. PROJECT# 840.050 FILENAME: MAIN1_FAC9A.WSW SHT

Vel Energy Super |Critical|Flow Top|Height/|Base Wt No Wth Depth Water Invert Station Elev (FT) Elev (CFS) (FPS) Head Grd.El. Elev Depth Width Dia.-FT or I.D. Z.L. Prs/Pip Ch Slope SF Ave "N" X-Fall SE Dpth Froude N Norm Dp Type Ch L/Elem HF ZR -6828.828 2727.626 462 2728.089 6.00 10.92 1.85 2729.94 .02 .87 1.69 2.000 .000 .00 0 . 0 .0250 .0549 3.37 .55 .013 .00 PIPE 5.652 .31 .49 .00 0 -6823.176 2728.214 2.04 2730.25 .03 1.67 2.000 .000 2727.768 6.00 11.45 .87 .00 .0 5.012 .0250 .0628 .31 3.60 .55 .013 .00 .00 PIPE 0 -6818.164 2727.893 2728.325 6.00 12.01 2.24 2730.57 .03 .87 1.65 2.000 .000 .00 .0250 4.458 .0719 .32 .46 3.84 .55 .013 .00 .00 PIPE 0 -6813.705 2728.005 2728.422 6.00 12.60 2.46 2730.89 .03 .87 1.63 2.000 .000 .00 .0 .013 .0250 .0823 .55 .00 PIPE 4.077 .34 .45 4.10 .00 0 -6809.628 2728.107 2728.511 6.00 13.21 2.71 2731.22 .03 .87 1.61 2.000 .000 .00 .0 .404 .013 .00 .00 -6805.899 2728.200 .391 2728.592 6.00 13.86 2.98 2731.57 .00 .87 1.59 2.000 .000 .00 0 67 802 . 013 0.0 1005 1006 6.82 .39 4.67 .39 .00 PTPE 0 -6738.097 2735.016 .391 2.98 2738.39 .00 1.59 2.000 .000 .00 2735.407 6.00 13.86 .87 .0 41.953 .1005 .0999 4.19 .39 4.67 .39 .013 .00 .00 PIPE 2739.625 .00 2.000 .000 .00 0 -6696.145 2739.233 13.80 2742.58 1.59 -1-33.984 .1005 .0930 3.16 .39 4.65 .39 .013 .00 .00 PIPE -6662.160 2742.650 .405 2743.055 6.00 13.15 2.69 2745.74 .00 .87 1.61 2.000 .000 . 00 0 -1-11.954 1005 0813 97 .39 .013 41 4.35 .00 .00 PIPE ♀ FILE: MAIN1_FAC9A.WSW W S P G W - CIVILDESIGN Version 14.08 PAGE

Program Package Serial Number: 7044 WATER SURFACE PROFILE LISTING

Date: 3- 3-2016 Time:10: 9:29

THE SEVENTY GCW TNC PROJECT# 840 050 FILENAME: MAIN1_FAC9A.WSW

*******	******	*****	******	******	******	*****	*****	*****	*****	*****	*****	******	****	*****	**
	Invert	Depth	Water	Q	Vel	Vel	Energy	Super	Critical	Flow Top	Height/	Base Wt		No Wt	h
Station	Elev	(FT)	Elev	(CFS)	(FPS)	Head	Grd.El.	Elev	Depth	Width	DiaFT	or I.D.	ZL	Prs/P	'ip
-															-
L/Elem	Ch Slope		1 1		ĺ	SF Ave	HF	SE Dpth	Froude N	Norm Dp	"N"	X-Fall	ZR	Type	
******	******	******	******	******	******	******	*******	*****	******	******	******	******	****	****	**
			1					1		1		1		1	
-6650.207		.419		6.00	12.54		2746.71	.00	.87	1.63	2.000	.000	.00	0	.0
-										-				-	
7.052	.1005					.0710	.50	.42	4.08	.39	.013	.00	.00	PIPE	
			[]				1	1		l				1	
-6643.155		.433		6.00		2.22		.00	.87	1.65	2.000	.000	.00	. 0	. 0
-													-	-	
4.859	.1005				e .	.0621	.30	.43	3.82	.39	.013	.00	.00	PIPE	
		1	ll		١			1		1				1	
-6638.295		.448	The bear medical .	6.00	11.40	2.02	2747.52	.00	.87	1.67	2.000	.000	.00	, 0	.0
2 642		-	11				1		3.58				-	-	
3.643	.1005	i	1 1		i	.0543	.20	.45	3.58	.39	.013	.00	.00	PIPE	
-6634.653	0745 415	163	2745.878	6.00	10.87	1.84	2747.71	.00	.87	1.69	2.000	.000	.00	0	0
		.463												1	. 0
2.841	 .1005		11		-	.0474	.13	.46	3.35	.39	.013	.00	.00	PIPE	
2.041	.1005	ı	1 1		F	.04/4		.40	J.J5		.013	.00	.00	PIPE	
-6631.812	2745.700	.479	2746.179	6.00	10.36	1.67	2747.85	.00	.87	1.71	2.000	.000	.00	0	. 0
									l- · · · -	l		II	.00	1_	. 0
2.297	.1005		11			.0415	.10	.48	3.14	.39	.013	.00	.00	PIPE	
2.257	1 .1005	ı	1 1		ř.	.0113	1	1	1		1			1	
-6629.515	2745 931	495	2746.427	6.00	9.88	1.52	2747.94	.00	.87	1.73	2.000	.000	.00	0	. 0
-			II				1	I	1	I	1	11	-	1-	
1.880	.1005		1 1			.0363	.07	.50	2.94	.39	.013	.00	.00	PIPE	
	1	I	1 1		ſ		I	1	I	1	1	1		1	
-6627.635	2746.120	.512	2746.633	6.00	9.42	1.38	2748.01	.00	.87	1.75	2.000	.000	.00	0	. 0
			11									II	- "	1-	
1.560	.1005					.0317	.05	.51	2.75	.39	.013	.00	.00	PIPE	
		I	1 1		ľ		I			1	Ĩ			Ī	
-6626.075	2746.277	.530	2746.807	6.00	8.98	1.25	2748.06	.00	.87	1.77	2.000	.000	.00	0	. 0
-								1				E E	-	1-	
1.305	.1005					.0278	.04	.53	2.57	.39	.013	.00	.00	PIPE	
		1	1 1		1					1		1		1	
-6624.770	2746.408	.549	2746.957	6.00	8.57	1.14	2748.10	.00	.87	1.79	2.000	.000	.00	0	. 0
-													-	1-	
1.110	.1005	-				.0243	.03	.55	2.41	.39	.013	.00		PIPE	
f FILE: MAI	N1_FAC9A.W	ISW					SIGN Version	on 14.08					1	PAGE	5
	_		Program	Package S	erial Nu	mber: 70	44								
					ran mmn	OTTO TIE OT	DDODTT D T	TOMTING			D-L- 2	2 0076	m !		

WATER SURFACE PROFILE LISTING

Date: 3- 3-2016 Time:10: 9:29 THE SEVENTY

GCW INC. PROJECT# 840.050 FILENAME: MAIN1_FAC9A.WSW SHT MAIN1_FAC9A.OUT

******	*****	******	******	******	*****	*****	******	*****	*****	******	*****	*****	*****	*****	**
	Invert	Depth	Water	Q	Vel	Vel	Energy	Super	Critical	Flow Top	Height/	Base Wt		No Wt	h
Station	Elev	(FT)	Elev	(CFS)	(FPS)	Head	Grd.El.	Elev	Depth	Width	DiaFT	or I.D.	ZL	Prs/P	in
		_ `/		_ (0.0)	1										
L/Elem	Ch Slope					SF Ave	HF	SE Doth	Froude N	Norm Do	"N"	X-Fall	ZR	Туре	Ch
******	*******	******	******	******	! *******			******	******	******	*****	*****	****	*****	
-6623.660	2746.520	560	2747.088	6.00	8.17	1.04	2748.12	.00	.87	1.80	2.000	.000	.00	0	.0
-6623.660	2746.520	.568		10.0000											. 0
		-												-	
.948	.1005					.0213	.02	.57	2.26	.39	.013	.00	.00	PIPE	
	l							l						1	_
-6622.712	2746.615	.587	2747.202	6.00	7.79	.94	2748.14	.00	. 87	1.82	2.000	.000	.00	. 0	.0
~ [[]					-				-	
.789	.1005					.0186	.01	.59	2.11	.39	.013	.00	.00	PIPE	
										×	1				
-6621.923	2746.694	.608	2747.302	6.00	7.42	.86	2748.16	.00	.87	1.84	2.000	.000	.00	0	.0
-													200		
.675	.1005					.0163	.01	.61	1.97	.39	.013	.00	.00	PIPE	
					1										
-6621.249	2746.762	.629	2747.391	6.00	7.08	.78	2748.17	.00	.87	1.86	2.000	.000	.00	0	.0
-							l]		[-	-8	
.565	.1005					.0143	.01	.63	1.85	.39	.013	.00	.00	PIPE	
	1		1		1		1	1		1	1	1	1		
-6620.684	2746.819	.651	2747.470	6.00	6.75	.71	2748.18	.00	.87	1.87	2.000	.000	.00	0	.0
	I	I			II			1					l -	-	
.469	.1005	1		l,		.0125	.01	.65	1.73	.39	.013	.00	.00	PIPE	
	1	1	i i	(I		1	1	1	1	1	1	1	1	
-6620.214	2746.866	.674	2747.540	6.00	6.44	.64	2748.18	.00	.87	1.89	2.000	.000	.00	0	. 0
0020.214			to an accompany to the company		ll		1					1	l _	1_	
.385	.1005		1	,	1 - 1	.0109	.00	.67	1.62	.39	.013	.00	.00	PIPE	
.305	1 .1005	1	i i	ř	ı	.0109	1	1	1.02	رد. ا	1			LIEE	
-6619.830	2746.905	.698	2747.603	6.00	6.14	.58	2748.19	.00	.87	1.91	2.000	.000	.00	0	.0
-6619.830	2746.905								•			l		I -	. 0
27.0	1-		[-			.0096	.00	.70	1.51	.39		.00		PIPE	
.310	.1005					.0096	.00	. 70	1.51		.013	.00	.00	PIPE	
	l							1	١		2.000				
-6619.520	2746.936	. 723	2747.659	6.00	5.85	.53	2748.19	.00	.87	1.92		.000	.00		.0
										J		l	-	-	
.242	.1005					.0084	.00	.72	1.41	.39	.013	.00	.00	PIPE	
					1				1	1		l l			
-6619.278	2746.960	.749	2747.709	6.00	5.58	.48	2748.19	.00	.87	1.94	2.000	.000	.00	0	.0
-															
.182	.1005					.0074	.00	.75	1.32	.39	.013	.00	.00	PIPE	
우 FILE: MAI	IN1_FAC9A.V	VSW					SIGN Versio	on 14.08					I	PAGE	6
			Program	Package Se	erial Num	ber: 70	14								
					WATER	SURFACE	PROFILE L	ISTING		1	Date: 3-	3-2016	Time:1	0: 9:2	9
		THE	SEVENTY												

GCW I					
	INC. PRO	OJECT#	840.09	50	
FII	LENAME:	MAIN1	FAC9A	.WSW	SH

		noncio de la circa de la circa	FILENAME	: MAIN1_F	AC9A.WSW	SHT									E-SESE!
*****	Invert	Depth	Water	0	Vel	Vel	Energy	Super	Critical	Flow Top	lueight /	Dage Wt	 I	No Wt	-h
Station	Elev	(FT)	Elev	(CFS)	(FPS)	Head	Grd.El.	Elev	Depth		DiaFT		ZL	Prs/I	
SCACION -	FIEV	(F1)	I Frev	(CF5)		- Incau	GIU.EI.	- BICV	- Depen	- mideli		- 1.D.		1 1 1 5 / 1	p
L/Elem	Ch Slope					SF Ave	HF	SE Doth	Froude N	Norm Do	"N"	X-Fall	ZR	Туре	Ch
******	******	******	******	******	*****		*****			*****				****	
			i i		,				i	i				i	
-6619.096	2746.979	.776	2747.755	6.00	5.32	.44	2748.19	.00	.87	1.95	2.000	.000	.00	0	.0
11 -													-	-	
.127	.1005					.0065	.00	.78	1.23	.39	.013	.00	.00	PIPE	
	1	l								1				1	
-6618.969	2746.991	.804	2747.795	6.00	5.07	.40	2748.19	.00	.87	1.96	2.000	.000	.00	0	.0
-										-		i	-] -	
.066	.1005					.0057	.00	.80	1.15	39	.013	.00	.00	PIPE	
9/9 (1.0) (2.1) (2.1)			l l						l	1				1	
-6618.903	2746.998	.834	2747.832	6.00	4.84	.36	2748.20	.00	.87	1.97	2.000	.000	.00	. 0	.0
-		-											-	DTDE	
.023	.1005	ti i	r i		r	.0050	.00	.83	1.07	.39	.013	.00	.00	PIPE	
-6618.880	2747.000	.866	2747.866	6.00	4.60	.33	2748.20	.00	.87	1.98	2.000	.000	.00	1	. 0
-0010.000	1	1	l	0.00	11			I	l07	l	11	11	1-	1-	. 0

MAIN1_FAC10A.WSW

T1	THE SEVENTY	-
T2	GCW INC. PROJECT# 840.050	
T3	FILENAME: MAIN1_FAC10A.WSW	
SO	7790.9102687.180 48	2692.147
R	7806.9102689.220 48 .01	13 4.000 .000 1
R	7827.3302695.000 48 .01	.000 .000
SH	7827.3302695.000 48	.000
CD	18 4 1.500	
CD	24 4 2.000	
CD	30 4 2.500	
CD	36 4 3.000	*
CD	42 4 3.500	
CD	48 4 4.000	
CD	54 4 4.500	
CD	60 4 5.000	
CD	72 4 6.000	
Q	23.000 .0	

file: Main1_fac10a.wsw

MAIN1_FAC10A.OUT

W S P G W - CIVILDESIGN Version 14.08

Program Package Serial Number: 7044

WATER SURFACE PROFILE LISTING

Date: 3- 3-2016 Time:10:10: 8

PAGE 1

WATER S
THE SEVENTY
GCW INC. PROJECT# 840.050
FILENAME: MAINI_FACIOA.WSW

******	******	******	******	*******	*******	*****	******	******	*****	******	*****	******	*****	****	**
Station	Invert Elev	Depth (FT)	Water Elev	Q (CFS)	Vel (FPS)	Vel Head	Energy Grd.El.	Super Elev	Critical Depth	Flow Top Width		Base Wt or I.D.	ZL	No Wt	
L/Elem ******	Ch Slope	******	******	******	*****	SF Ave	HF ******	SE Dpth	Froude N	Norm Dp	******	X-Fall *****	ZR ****	Type ****	
7790.910	2687.180	4.967	 2692.147	23.00	1.83	.05	2692.20	.00	1.41	.00	4.000	.000	.00	. 0	.0
7.622	.1275				-	.0003	.00	.00	.00	.58	.013	.00	.00	PIPE	
7798.532	 2688.152 		2692.152	23.00	1.83	.05	2692.20	4.00	1.41	.00	4.000	.000	.00	0	.0
2.866	.1275			-	-	.0002	.00	4.00	.00	.58	.013	.00	.00	PIPE	
7801.397		3.629		23.00	1.92 -	.06	2692.20	.00	1.41	2.32	4.000	.000	.00	0	.0
1.652	.1275			[.0002	.00	3.63	.15	.58	.013	.00	.00	PIPE	
7803.050			 2692.141 	23.00	2.01 -	.06	2692.20	.00	 1.41 	2.83 	4.000	.000	.00	0	.0
1.341	.1275	[1	[- [- 	.0003	.00	3.41	.18	.58	.013	.00	.00	PIPE	
7804.391		3.236		23.00	2.11 -	.07	2692.20	.00	1.41	3.14 	4.000	.000	.00	0	.0
1.172	.1275	ı	1		i e	.0003	.00	3.24	.20	.58 I	.013	.00	.00	PIPE	
7805.563	2689.048	3.080	2692.128	23.00	2.21 -	.08	2692.20	' .00 	1.41	3.37	4.000	.000 -	.00 -	0 -	.0
1.041	.1275		i L			.0003	.00	3.08	.22	' .58 I	.013	' .00 I	.00	PIPE	
7806.604	2689.181 	2.940		23.00	2.32	.08	2692.21	.00 		3.53	4.000	.000	.00	, -	.0
.305	.1275		1	ı		.0003	.00	2.94	.24	.58	.013	.00 I	.00 I	PIPE	
7806.909			2692.119	23.00	2.36	.09		.00 	1.41	3.57 	4.000	.000	.00 -	° 0 -	.0
HYDRAULIC	I	1	l	I	i.			1	Ī.	1	1	ı	I	1	
7806.910			2689.817	23.00	19.56 -	-			1.41	2.85				0	. 0
1.546 P FILE: MAI	.2831 IN1 FAC10A	.WSW		ws	PGW-C	.1062	.16 SIGN Versio	.60 on 14.08	5.37	.48	.013	.00		PIPE	2
	-														

Program Package Serial Number: 7044
WATER SURFACE PROFILE LISTING

Date: 3- 3-2016 Time:10:10: 8

THE SEVENTY
GCW INC. PROJECT# 840.050
FILENAME: MAIN1_FAC10A.WSW

*****			FILENAME	: MAIN1_FA	AC10A.WSW	*****									
	Invert	Depth	Water	0	Vel	Vel	Energy	Super	Critical	Flow Top	Height/	Base Wt		No Wt	h
Station	Elev	(FT)	Elev	(CFS)	(FPS)	Head	Grd.El.	Elev	Depth	Width	DiaFT	or I.D.	ZL	Prs/F	Pip
L/Elem	Ch Slope					SF Ave	- HF	CE Doth	Froude N	Your Do	- "N"	 X-Fall	- zr	m	a.
*******	*******	*****	******	*****	******		*****		******	******	*****	******	****	Type ****	
	i		i i					İ				1 1			
7808.456			2690.265	23.00	19.07		2695.91	.00	1.41	2.87	4.000	.000	.00	0	.0
2.635	.2831					.0959	.25	.61	5.19	.48	.013	.00	.00	PIPE	
2.055			1 1					1			1	1 1			
7811.091	2690.403	.628		23.00	18.18	5.13	2696.16	.00	1.41	2.91	4.000	.000	.00	0	. 0
2.235	.2831	-				.0837	.19	.63	4.86	.48	.013	.00	.00	PIPE	
2.255	.2031					.0057	1	1	1.00	1	1	1	.00	1	
7813.326	2691.036		2691.685	23.00	17.33		2696.35	.00	1.41	2.95	4.000	.000	.00	0	.0
1.915	.2831					.0731	.14	- .65	4.55	.48	.013	 .00	.00	PIPE	
1.915	.2031		1 1			.0751		1 .05	1 4.55	.40	1 .015	۱ .۰۰	.00	FIFE	
7815.241	2691.578	.671	2692.249	23.00	16.53	4.24		.00	1.41	2.99	4.000	.000	.00	0	.0
1.654	 .2831				[]	.0638	.11	.67	4.27	.48	.013	 .00	00	PIPE	
1.654	.2831	1			f	.0636		1 .67	4.27	.40	1 .013	1 .00	.00	PIPE	
7816.895	2692.046	.694	2692.740	23.00	15.76	3.86	2696.60	.00	1.41	3.03	4.000	.000	.00	0	.0
											1		-		
1.441	.2831	1	r 1		Ē	.0558	.08	.69	4.00	.48	.013	.00	.00	PIPE	
7818.335	2692.454	.717	2693.171	23.00	15.02	3.51	2696.68	.00	1.41	3.07	4.000	.000	.00	0	. 0
_													-	-	
1.257	.2831		i i		ľ	.0487	.06	.72	3.75	.48	.013	.00	.00	PIPE	
7819.593	2692.810	.741	2693.551	23.00	14.33	3.19	2696.74	.00	1.41	3.11	4.000	.000	.00	0	. 0
-							-							-	
1.101	.2831		P I		ı.	.0425	.05	.74	3.51	.48	.013	.00	.00	PIPE	
7820.693	2693.121	.766	2693.887	23.00	13.66	2.90	2696.78	.00	1.41	3.15	4.000	.000	.00	0	. 0
-												lI		-	
.965	.2831					.0372	.04	.77	3.29	.48	.013	.00	.00	PIPE	
7821.659	2693.395	.792	2694.187	23.00	13.02	2.63	2696.82	.00	1.41	3.19	4.000	.000	.00	0	. 0
7021.039								. 9.32.8				II		۱-	. 0
.848	.2831		9 .			.0325	.03	.79	3.08	.48	.013	.00	.00	PIPE	
♀ FILE: MAI	N1_FAC10A.	WSW	Drogram	W S			SIGN Versio	on 14.08					I	PAGE	3

Program Package Serial Number: 7044
WATER SURFACE PROFILE LISTING

Date: 3- 3-2016 Time:10:10: 8

THE SEVENTY
GCW INC. PROJECT# 840.050
FILENAME: MAIN1_FAC10A.WSW

*****	******	*****	******	******	******	*****	******	*****	*****	******	******	******	*****	****	**
Station	Invert Elev	Depth (FT)	Water Elev	Q (CFS)	Vel (FPS)	Vel Head	Energy Grd.El.	Super Elev	Critical Depth		Height/ DiaFT		ZL	No Wtl	
-															_
L/Elem	Ch Slope	******	*******	*****	*****	SF Ave	HF	SE Dpth	Froude N	Norm Dp	"N"	X-Fall	ZR ****	Type	
7822.506	2693.635	.819	2694.454	23.00	12.42		2696.85	.00	1.41	3.23	4.000	.000	.00	0	.0
.745	.2831		-			.0284	.02	.82	2.89	.48	.013	 - 00	.00	PIPE	
.745	.2051	I	1			.0201	1	1	1	1	1		1	1	
7823.251				23.00	11.84	2.18		.00 -	1.41 	3.27	4.000	.000	.00	0	.0
.654	.2831	-		-	[.0248	.02	.85	2.71	.48	.013	.00	.00	PIPE	
7823.905	2694.030	.876	2694.906	23.00	11.29	1.98	2696.89	.00	1.41	3.31	4.000	.000	.00	0	.0
-													-	-	
.573	.2831	I	I	· [I	.0217	.01	.88 I	2.53	.48	.013	.00	.00	PIPE	
7824.478	2694.193	.906		23.00	10.76	1.80		.00	1.41	3.35	4.000	.000	.00	0	. 0
.502	.2831	-				.0190	.01	 .91	2.37	.48	.013	.00	.00	PIPE	
.502	1	l	l	1	1	.0250	1	1	1	1	1				
7824.980	2694.335	.937	2695.272	23.00	10.26	1.64	2696.91	.00	1.41	3.39	4.000	.000	.00	0	.0
-													-	-	
.438	.2831	i	ī	1	ľ	.0166	.01	.94	2.22	.48	.013	.00	.00	PIPE	
7825.418	2694.459	.969	2695.428	23.00	9.78	1.49	2696.91	.00	1.41	3.43	4.000	.000	.00	0	. 0
-													-	-	
.380	.2831	ĺ	i	1	ĺ	.0145	.01	.97 I	2.08 I	.48	.013	.00	.00	PIPE	
7825.798	2694.566		2695.569	23.00	9.33	1.35	2696.92	.00	1.41	3.47	4.000	.000	.00	0	.0
.325	.2831	-				.0127	.00	1.00	1.95	.48	.013	.00	.00	PIPE	
.525	1	I	l i		1	.011	1	1	1	1	1	1			
7826.123	2694.658		2695.696	23.00	8.90	1.23		.00	1.41	3.51	4.000	.000	.00	0	.0
.282	.2831					.0111	.00	1.04	1.83	.48	.013	.00	.00	PIPE	
.282	.2031	1	i i	1	ſ	.0111	.00	1.04	1.03		1 .013	1 .00	1	PIPE	
7826.405	2694.738	1.072		23.00	8.48	1.12	2696.93	.00	1.41	3.54	4.000	.000	.00		.0
-														-	
.236 P FILE: MAI	.2831	MCW		W C	DCW-	.0097	.00 SIGN Version	1.07	1.71	.48	.013	.00	.00	PIPE	4
T FIDE: MAI	INT_PACTUA.	WOW.		- W 5	- G W -	CIVIDE	TOW ACTRIC	JII 14.00						MOL	4

THE SEVENTY

Program Package Serial Number: 7044
WATER SURFACE PROFILE LISTING

Date: 3- 3-2016 Time:10:10: 8

GCW INC. PROJECT# 840.050 FILENAME: MAIN1_FAC10A.WSW ***** Energy Grd.El |Critical|Flow Top|Height/|Base Wt No Wth Vel Super Invert Depth Water Station Elev Elev (CFS) (FPS) Head Elev Depth Width Dia.-FT or I.D. ZL Prs/Pip SF Ave "N" ZR Ch Slope HF X-Fall L/Elem SE Dpth Froude N Norm Dp Type Ch 7826.642 2694.805 1.109 2695.914 23.00 8.09 1.02 2696.93 .00 1.41 3.58 4.000 .000 .00 0 .0 .194 2831 .0085 .00 1.11 1.60 .48 .013 .00 .00 PIPE 7.71 .00 3.62 4.000 .000 0 2696.008 23.00 .92 2696.93 7826.836 2694.860 1.148 .00 .0 .0074 .00 .013 .00 .2831 1.15 .00 PIPE .159 7826.995 2696.093 23.00 2696.93 .00 4.000 .000 .00 0 .124 .2831 .0065 .00 1.19 1.40 .48 .013 .00 .00 PIPE 7827.119 2694.940 1.230 2696.170 23.00 7.01 .76 2696.93 .00 1.41 3.69 4.000 .000 .00 0 .0 .013 .0057 .00 .00 PIPE .095 .2831 1.23 .00 23.00 6.68 2696.93 .00 4.000 .000 0 7827.214 2694.967 2696.240 .69 3.73 .00 .0 .2831 .0050 .00 1.27 .013 .00 .00 PIPE 7827.279 2694.986 1.318 2696.304 23.00 6.37 .63 2696.93 .00 1.41 3.76 4.000 .000 .00 0 0.0 1.15 .013 041 2831 0044 1.32 .48 .00 0.0 PTPE .00 4.000 0 7827.320 2694.997 2696.361 23.00 6.08 .57 2696.93 1.41 .000 .00 1.364 .0 .00 .010 .2831 .0038 1.07 .013 .00 PIPE 1.36 .48 .00 2696.414 2696.93 .000 우

MAIN1_FAC10B.WSW

T1	THE SEVENTY	_
T2	GCW INC. PROJECT# 840.050	
T3	FILENAME: MAIN1_FAC10B.WSW	
SO	-7762.9102686.410 48	2692.147
R	-7746.9102687.580 48 .013	28.340 .000 1
R	-7707.3402694.000 48 .013	.000 .000
SH	-7707.3402694.000 48	.000
CD	18 4 1.500	
CD	24 4 2.000	
CD	30 4 2.500	
CD	36 4 3.000	
CD	42 4 3.500	
CD	48 4 4.000	
CD	54 4 4.500	
CD	60 4 5.000	
CD	72 4 6.000	
Q	36.000 .0	

MAIN1_FAC10B.OUT
W S P G W - CIVILDESIGN Version 14.08
Program Package Serial Number: 7044
WATER SURFACE PROFILE LISTING

THE SEVENTY
GCW INC. PROJECT# 840.050
FILENAME: MAIN1_FAC10B.WSW

♀ FILE: MAIN1_FAC10B.WSW

Date: 3- 3-2016 Time:10:31:10

PAGE 1

			FILENAM	S: MAIN1_FA	CIOB.WSW										. 4. 4.
******	Invert	Depth	Water	0 1	Vel	Vel	Energy	Super	Critical	Flow Top	Height/	Base Wt I		No Wt	h
Station	Elev	(FT)	Elev	(CFS)	(FPS)	Head	Grd.El.	Elev	Depth		DiaFT		ZL	Prs/P	
_		- ''		- (- '										
L/Elem	Ch Slope					SF Ave	HF	SE Dpth	Froude N	Norm Dp	"N"	X-Fall	ZR	Type	Ch
******	******	******	******	******	*****	*****	******	******	******	******	*****	******	****	****	**
														L	
-7762.910			2692.147	36.00	2.86	.13	2692.27	.00	1.79	.00	4.000	.000	.00	0	. 0
16.000	.0731	-	-		1	.0006	.01	.00	.00	.82	.013	 .00	.00	PIPE	
16.000	1 .0731	ı	1			.0006	1	1	1	. 02 I	1 .013	1 .00	.00	FIFE	
-7746.910	2687.580	4.598	2692.178	36.00	2.86	.13	2692.31	.00	1.79	.00	4.000	.000	.00	0	.0
-								-					-	-	
3.698	.1622					.0006	.00	4.60	.00	.68	.013	.00	.00	PIPE	
						200	0.0000000000000000000000000000000000000		1	l	1				
-7743.212	2688.180		2692.180	36.00	2.86	.13		.00	1.79	.00	4.000	.000	.00	0	.0
2.209	.1622				1	.0006	.00	4.00	.00	.68	.013	 .00		PIPE	
2.209	1 .1622	1	1	1 1		.0006	1	1 4.00	1		1 .013	I .00	.00	PIPE	
-7741.003	2688.538	3.629	2692.167	36.00	3.00	.14	2692.31	.00	1.79	2.32	4.000	.000	.00	0	.0
-													-	-	
1.025	.1622					.0006	.00	3.63	.23	.68	.013	.00	.00	PIPE	
enteronalità est appropriate						200			I		1			l	
-7739.978			2692.157	36.00	3.12		2692.31	.00	1.79	2.75	4.000	.000	.00	0	.0
HYDRAULIC		-			1		-						-	-	
HIDRAUDIC	I	i	ĺ	1 1			Î	i	1 1	ſ	1	i i		Ī	
-7739.978	2688.705	.829	2689.533	36.00	19.12	5.68	2695.21	.00	1.79	3.24	4.000	.000	.00	0	.0
-													-	-	
.856	.1622					.0699	.06	.83	4.42	.68	.013	.00	.00	PIPE	
	1					2 22									
-7739.121	2688.844	.834	2689.677	36.00	18.93		2695.24	.00	1.79	3.25	4.000	.000	.00		. 0
4.885	.1622					.0646	.32	.83	4.36	.68	.013	 .00		PIPE	
4.005	1	ı	f i	1 1	ſ	.0040	1 .32		1	1	1 .013		.00	LIEB	
-7734.236	2689.636	.863	2690.499	36.00	18.05	5.06	2695.56	.00	1.79	3.29	4.000	.000	.00	' 0	. 0
-													-	-	
4.075	.1622					.0565	.23	.86	4.09	.68	.013	.00	.00	PIPE	
									1		1	I			contra
-7730.161			2691.189	36.00	17.21	4.60	2695.79	.00	1.79	3.33	4.000	.000	.00		.0
3.430	.1622					.0494	.17	89		.68	.013	-		PIPE	
4 FILE: MAI		WSW		Wq	PGW-		GIGN Version		3.03	.00	.013	.00		PAGE	2
, ribb. PA	IACIOD.		Program	Package Se											-

W S P G W - CIVILDESIGN Version 14.08
Program Package Serial Number: 7044
WATER SURFACE PROFILE LISTING
THE SEVENTY
GCW INC. PROJECT# 840.050
FILENAME: MAIN_FACIOB.WSW

Date: 3- 3-2016 Time:10:31:10

******	*****	*****	*****	******	******	*****	******	*****	*****	*****	*****	*****	****	*****	**
	Invert	Depth	Water	Q	Vel	Vel	Energy		Critical					No Wt	
Station	Elev	(FT)	Elev	(CFS)	(FPS)	Head	Grd.El.	Elev	Depth	Width	DiaFT	or I.D.	ZL	Prs/P	'ip
- /		-			1									_	
L/Elem	Ch Slope		******	*******	******	SF Ave	HF	SE Dptn	Froude N	Norm Dp	"N"	X-Fall	ZR ****	Type	
******		*******	*****	********	******	****	********	******	******	*******	******		****	****	* *
-7726.731	2690.854	.923	2691.777	36.00	16.41	4.18	2695.96	.00	1.79	3.37	4.000	.000	.00	0	. 0
-	I												l -	1-	5.5.
2.932	.1622					.0432	.13	.92	3.59	.68	.013	.00	.00	PIPE	
		1													
-7723.799	2691.329		2692.283	36.00	15.65	3.80		.00	1.79	3.41	4.000	.000	.00	0	.0
2.511	.1622			-		.0377	 .09	.95	3.36	.68	.013	.00	-	PIPE	
2.511	.1622	1	1	I.	P.	.03//	.09	. 95	3.36 I		1 .013	.00		PIPE	
-7721.288	2691.737	.987	2692.724	36.00	14.92	3.46	2696.18	.00	1.79	3.45	4.000	.000	.00	0	. 0
-		1			1							- I-	-	-	-
2.168	.1622			•		.0330	.07	.99	3.14	.68	.013	.00	.00	PIPE	
		1					1		l		l	1		1	
-7719.120			2693.110	36.00	14.23	3.14		.00	1.79	3.49	4.000	.000	.00	. 0	.0
1.879	.1622					.0289	.05	1.02	2.94	.68	.013	.00	.00	PIPE	
1.879	.1622	Ĭ	1	ı	ř	.0269	.05	1.02	2.94	. 00	.013	.00	.00	PIPE	
-7717.241	2692.394	1.056	2693.450	36.00	13.56	2.86	2696.31	.00	1.79	3.53	4.000	.000	.00	0	. 0
-														I -	
1.625	.1622			5) N		.0252	.04	1.06	2.76	.68	.013	.00	.00	PIPE	
		1			DE 1880 VARIAGO.		l							1	
-7715.615	2692.657	1.093		36.00	12.93		2696.35	.00	1.79	3.57	4.000	.000	.00	. 0	.0
1.420	.1622					.0221	.03	1.09	2.58	.68	.013	.00	.00	PIPE	
1.420	.1622	1	1 3	E	ı	.0221	.03	1.09	2.58 I	.68	.013	.00	.00	PIPE	
-7714.195	2692.888	1.130	2694.018	36.00	12.33	2.36	2696.38	.00	1.79	3.60	4.000	.000	.00	0	. 0
					II				l]		1-	1-	
1.222	.1622	•				.0193	.02	1.13	2.41	.68	.013	.00	.00	PIPE	
	1	1					I	1			1	1	Į.	l	
-7712.973	2693.086		2694.256	36.00	11.76	2.15	· Composition to Streeting	.00	1.79	3.64	4.000	.000	.00	. 0	. 0
	-	1											-	-	
1.061	.1622	1	i	ř	í	.0169	.02	1.17	2.26	.68	.013	.00	.00	PIPE	
-7711 912	2693.258	1 211	2694.469	36.00	11.21	1 95	2696.42	.00	1.79	3.68	4.000	.000	.00	0	. 0
														1-	. 0
.918	.1622	1		I.		.0148	.01	1.21	2.11	.68	.013	.00		PIPE	
♀ FILE: MAI	IN1_FAC10B	.WSW		WS	P G W -	CIVILDES	SIGN Version	on 14.08					3	PAGE	3
	_		Program	Package Se	erial Num	ber: 70	44								

Program Package Serial Number: 7044

WATER SURFACE PROFILE LISTING

Date: 3- 3-2016 Time:10:31:10

THE SEVENTY
GCW INC. PROJECT# 840.050
FILENAME: MAINI_FAC10B.WSW

******	******	*****	******	******	******	*****	******	*****	******	*****	*****	******	****	****	r**
	Invert	Depth	Water	Q	Vel	Vel	Energy	Super	Critical	Flow Top	Height/	Base Wt		No Wt	:h
Station	Elev	(FT)	Elev	(CFS)	(FPS)	Head	Grd.El.	Elev	Depth	Width	DiaFT	or I.D.	ZL	Prs/F	Pip
-														İ	
L/Elem	Ch Slope	ĺ				SF Ave	HF	SE Dpth	Froude N	Norm Dp	"N"	X-Fall	ZR	Туре	Ch
******	******	******	******	******	******	*****	******	*****	******	******	*****	******	****	****	**
									İ	l					
-7710.995	2693.407	1.253	2694.660	36.00	10.69	1.77	2696.43	.00	1.79	3.71	4.000	.000	.00	0	. 0
-													-	-	
.786	.1622					.0130	.01	1.25	1.98	.68	.013	.00	.00	PIPE	
		[1						1	
-7710.209	2693.534	1.297	2694.832	36.00	10.19		2696.44	.00	1.79	3.74	4.000	.000	.00	. 0	.0
-				E 12			1]	-	-	
.667	.1622					.0114	.01	1.30	1.85	.68	.013	.00	.00	PIPE	
	l				l			1	1		1			1	2
-7709.542	2693.643		2694.986	36.00	9.72	1.47	2696.45	.00	1.79	3.78	4.000	.000	.00	0	.0
	-												-	-	
.560	.1622	r			ı	.0100	.01	1.34	1.73	.68	.013	.00	.00	PIPE	
5500 000	0.502 522	1 201	0.005 1.05	26.00	0.00	7 22	2606 46	1	1.79	3.81	4.000	.000	0.0	1	•
-7708.982	2693.733		2695.125	36.00	9.26	1.33	2696.46	.00	1.79				.00	0	. 0
.470	.1622					.0087	.00	1.39		.68	.013	.00	.00	PIPE	
.470	.1622	ī	1 1	i	r	.0087	.00	1.39	1.02	.00	.013	.00	.00	PIPE	
-7708.513	2693.810	1.440	2695.250	36.00	8.83	1 21	2696.46	.00	1.79	3.84	4.000	.000	.00	0	. 0
-7700.515	1	1.440		l	ll		1	I	1	1	1	11	00	1_	. 0
.376	.1622					.0077	.00	1.44	1.51	.68	.013	.00	.00	PIPE	
.570	1	1	1 1	1	ĺ	.0077	1	1	1	1	1		.00	1.	
-7708.137	2693.871	1.492	2695.363	36.00	8.42	1.10	2696.46	.00	1.79	3.87	4.000	.000	.00	0	.0
-	1						I	1	1	I				1-	
.296	.1622	1				.0067	.00	1.49	1.41	.68	.013	.00	.00	PIPE	
2.77.5.2		I	1	1	ĺ		ľ	1	1	ľ .	1	1		1	
-7707.840	2693.919	1.546	2695.465	36.00	8.03	1.00	2696.47	.00	1.79	3.90	4.000	.000	.00	0	. 0
-	[[]								÷	-	
.224	.1622					.0059	.00	1.55	1.32	.68	.013	.00	.00	PIPE	
	1	1		_	I			1			1				
-7707.616	2693.955	1.602	2695.557	36.00	7.66	.91	2696.47	.00	1.79	3.92	4.000	.000	.00	0	.0
-													-	-	
.158	.1622					.0052	.00	1.60	1.23	.68	.013	.00	.00	PIPE	
	l	I			l		l	1	I	I I		1 1		1	
-7707.458	2693.981	1.660	2695.641	36.00	7.30	.83	2696.47	.00	1.79	3.94	4.000	.000	.00	0	. 0
										A CONTRACTOR]]		1-	
.090	.1622					.0045	.00	1.66	1.15	.68	.013	.00		PIPE	
우 FILE: MAI	IN1_FAC10B	.WSW		WS	PGW-	CIVILDES	SIGN Version	on 14.08					1	PAGE	4

THE SEVENTY

Program Package Serial Number: 7044
WATER SURFACE PROFILE LISTING Date: 3- 3-2016 Time:10:31:10

****** ****** Energy | Super | Critical | Flow Top | Height/ | Base Wt | Grd.El. | Elev | Depth | Width | Dia.-FT | or I.D. | Water Vel No Wth Depth Invert Station Elev Elev (CFS) (FPS) Head ZL Prs/Pip "N" Ch Slope SF Ave HF SE Dpth Froude N Norm Dp X-Fall ZR Type Ch L/Elem 58 2693.995 -|-75 2696.47 -|-.00 -|-0 4.000 -7707.368 1.721 2695.717 36.00 6.96 .75 .00 1.79 3.96 .000 0 .0 -|-1.72 .013 .0040 1.07 .68 PIPE 028 1622 . 00 .00 .00 ا ُ000 6.63 68 2696.47 -|-0 1.79 | 1.786 2695.786 -|- -| .68 1 -7707.340 2694.000 36.00 .00 3.98 4.000 .00 0 .0

MAIN1_FAC12A.WSW

T1	THE	SEVEN	TY							
T2	GC	W INC	. PROJECT	# 840.0	50					
T 3	FI	LENAM	E: MAIN1	FAC12A.	WSW SI	HT				
SO	87	23.64	02677.000	24			2685.47	5		
R	87	39.64	02678.080	24	.013				0.000	.000 0
SH	87	39.64	02678.080	24			.000			
CD	18	4		1.50	0					
CD	24	4		2.00	0					
CD	30	4		2.50	0					
CD	36	4		3.00	0					
CD	42	4		3.50	0					
CD	48	4		4.00	0					
CD	54	4		4.50	0					
CD	60	4		5.00	0					
CD	72	4		6.00	0					
Q			22.000	.0						

MAIN1_FAC12A.OUT
W S P G W - CIVILDESIGN Version 14.08
Program Package Serial Number: 7044
WATER SURFACE PROFILE LISTING ♀ FILE: MAIN1_FAC12A.WSW

Date: 3- 3-2016 Time:10:11:40

PAGE

THE SEVENTY
GCW INC. PROJECT# 840.050

FILENAME:	MAIN1	FAC12A.WSW	SHT

***************************************														*****	*
	Invert	Depth	Water	Q	Vel	Vel	Energy	Super	Critical	Flow Top	Height/	Base Wt		No Wth	40
Station	Elev	(FT)	Elev	(CFS)	(FPS)	Head	Grd.El.	Elev	Depth	Width	DiaFT	or I.D.	ZL	Prs/Pi	p
-															
L/Elem	Ch Slope	İ				SF Ave	HF	SE Dpth	Froude N	Norm Dp	"N"	X-Fall	ZR	Type Cl	h
******	******	******	******	******	******	*****	*****	******	******	******	******	******	****	*****	*
		1							1]	l	{	(
8723.640	2677.000	8.475	2685.475	22.00	7.00	.76	2686.24	.00	1.68	.00	2.000	.000	.00	0 .	0
-													-	-	
16.000	.0675					.0095	.15	8.48	.00	.85	.013	.00	.00	PIPE	
	1	I]	1		I	1	1	
8739.640	2678.080	7.546	2685.626	22.00	7.00	.76	2686.39	.00	1.68	.00	2.000	.000	.00	0 .	0
-											-		-	-	
₽.															

Page 1

MAIN1_FAC12B.WSW

T1	THE SEVENTY	·		
T2	GCW INC. PROJECT# 840.050			
T3	FILENAME: MAIN1_FAC12B.WSW SHT			
SO	-8695.6402677.000 24	2685.475		
R	-8679.6402678.080 24 .013		0.000	.000 0
SH	-8679.6402678.080 24	.000		
CD	18 4 1.500			
CD	24 4 2.000			
CD	30 4 2.500			
CD	36 4 3.000			
CD	42 4 3.500			
CD	48 4 4.000			
CD	54 4 4.500			
CD	60 4 5.000			
CD	72 4 6.000			
Q	22.000 .0			

MAIN1_FAC12B.OUT
W S P G W - CIVILDESIGN Version 14.08
Program Package Serial Number: 7044
WATER SURFACE PROFILE LISTING

Date: 3- 3-2016 Time:10:14:41

PAGE

THE SEVENTY
GCW INC. PROJECT# 840.050

f FILE: MAIN1_FAC12B.WSW

FILENAME:	MAIN1	FAC12B.WSW	SHT

***************************************													*****	**	
	Invert	Depth	Water	Q I	Vel	Vel	Energy	Super	Critical	Flow Top	Height/	Base Wt		No Wt	h
Station	Elev	(FT)	Elev	(CFS)	(FPS)	Head	Grd.El.	Elev	Depth	Width	DiaFT	or I.D.	ZL	Prs/P	'ip
-							- :-			-		- -			
L/Elem	Ch Slope			.		SF Ave	HF		Froude N		"N"	X-Fall	ZR	Type	
******	******	*****	******	******	*****	*****	******	******	*****	******	******	******	****	****	**
	l										l				
-8695.640	2677.000	8.475	2685.475	22.00	7.00	.76	2686.24	00	1.68	.00	2.000	.000	.00	. 0	. 0
-							7040				1		-	-	
16.000	.0675					.0095	.15	8.48	.00	. 85	.013	.00	.00	PIPE	
							an indian in the second	1	l					1	
-8679.640	2678.080	7.546	2685.626	22.00	7.00	.76	2686.39	.00	1.68	.00	2.000	.000	.00	0	. 0
-	- 1-			- :-						-			-	-	
우															

Page 1

MAIN1_FAC13A.WSW

T1	THE S	SEVENTY			_			
T2	GCV	V INC. PROJECT	# 840.05)				
T 3	FII	LENAME: MAIN1_	FAC13A.W	SW				
SO	-916	6.0602668.400	36		26	75.655		
R	-913	36.0602672.900	36	.013			14.000	.000 1
R	-912	21.9202675.020	36	.013			.000	.000
SH	-912	21.9202675.020	36			.000		
CD	18	4	1.500					
CD	24	4	2.000					
CD	30	4	2.500					
CD	36	4	3.000					
CD	42	4	3.500					
CD	48	4	4.000					
CD	54	4	4.500					
CD	60	4	5.000					
CD	72	4	6.000					
Q		22.000	.0					

MAIN1 FAC13A.OUT ♀ FILE: MAIN1_FAC13A.WSW W S P G W - CIVILDESIGN Version 14.08 Program Package Serial Number: 7044

WATER SURFACE PROFILE LISTING THE SEVENTY GCW INC. PROJECT# 840.050

FILENAME: MAIN1_FAC13A.WSW Invert Depth Water Vel Vel Energy Grd.El. Super | Critical | Flow Top | Height / Base Wt | Elev | Depth | Width | Dia.-FT | or I.D. | No Wth (CFS) (FPS) Head Prs/Pip Station Elev (FT) Elev L/Elem Ch Slope SF Ave HF SE Dpth Froude N "N" X-Fall ZR Type Ch -9166.060 2668.400 2675.655 2675.81 3.000 0 .15 .00 .000 .00 1.51 .00 28.701 .0011 .00 .013 .00 .00 PIPE -9137.358 2672.705 3.000 2675.705 22.00 3.11 .15 2675.86 3.00 3.000 .000 .00 0 .1500 1.299 .0010 .00 3.00 .00 .59 .013 .00 .00 PIPE -9136.060 2672.900 2.796 2675.696 22.00 3.21 .16 2675.86 .00 1.51 1.51 3.000 .000 .00 0 .0 .0010 2.80 .013 1.103 .1499 .00 .27 .59 .00 .00 PIPE -9134.957 2673.065 2.616 2675.681 22.00 .18 2675.86 .00 1.51 2.00 3.000 .000 .00 0 3.36 .0010 .013 .00 -9134.521 2673.131 2.542 2675.673 22.00 3.44 .18 2675.86 .00 1.51 2.16 3.000 .000 .00 0 HYDRAULTC JUMP -9134.521 2673.131 2673.968 22.00 2676.86 .00 2.69 3.000 0 13.65 2.89 1.51 .000 .00 .0 .1499 .0362 .04 3.11 .013 1.113 .84 .59 .00 .00 PIPE 0 -9133.407 2673.298 13.26 1.858 .1499 .0325 .06 . 85 2.99 .59 .013 .00 .00 PIPE 3.000 -9131.549 2673.576 2674.460 22.00 12.64 2.48 2676.94 .00 1.51 2.74 .000 -00 0 .0285 .05 .59 .013 1.603 .1499 .88 2.79 .00 .00 PIPE .00 2.76 0 2673.817 2674.732 12.05 2.26 2676.99 1.51 3.000 .000 .00 -9129.946 .915 22.00 1.385 .1499 .59 W S P G W - CIVILDESIGN Version 14.08 ₽ FILE: MAIN1 FAC13A.WSW PAGE

Program Package Serial Number: 7044
WATER SURFACE PROFILE LISTING

Date: 3- 3-2016 Time:10:16:30

PAGE

Date: 3- 3-2016 Time:10:16:30

THE SEVENTY
GCW INC. PROJECT# 840.050 FILENAME: MAIN1_FAC13A.WSW

***************************************													**		
	Invert	Depth	Water	Q	Vel	Vel	Energy	Super	Critical					No Wt	
Station	Elev	(FT)	Elev	(CFS)	(FPS)	Head	Grd.El.	Elev	Depth	Width	DiaFT	or I.D.	ZL	Prs/P	'ip
L/Elem	 Ch Slope					SF Ave	- HF	CE Doth	Froude N	Norm Do	"N"	X-Fall	ZR -	m	Cl.
1/EICIII	*******	*****	******	******	******	*****	******	******	*******	*******	******	******	****	Type	
				100	'				i	i		1 1			
-9128.562	2674.024	.947	2674.971	22.00	11.49	2.05	2677.02	.00	1.51	2.79	3.000	.000	.00	' 0	.0
-							La so							-	
1.198	.1499	i			í	.0218	.03	.95	2.44	.59	.013	.00	.00	PIPE	
-9127.363	2674.204	.980	2675.184	22.00	10.96	1.86	2677.05	.00	1.51	2.81	3.000	.000	.00	0	. 0
									•			II	00	1-	. 0
1.028	.1499				,	.0191	.02	.98	2.29	.59	.013	.00	.00	PIPE	
								1							
-9126.335	2674.358	1.015	2675.374	22.00	10.45	1.70	2677.07	.00	1.51	2.84	3.000	.000	.00	. 0	.0
- 007	.1499	-	ļ,			.0168	.01	1.02	2.14	.59	.013	.00	.00	- PIPE	
.887	.1499	1	1	l :	ı	.0168	.01	1.02	2.14 I	.59 I	1 .013	1 .00	.00	PIPE	
-9125.448	2674.491	1.051	2675.542	22.00	9.96	1.54	2677.08	.00	1.51	2.86	3.000	.000	.00	0	. 0
-						-) -							-	-	
.763	.1499					.0147	.01	1.05	2.00	.59	.013	.00	.00	PIPE	
							1	1	l		1			1	11.56=11
-9124.686	2674.606	1.088	2675.694	22.00	9.50	1.40	2677.09	.00	1.51	2.88	3.000	.000	.00	. 0	.0
.645	.1499		-			.0129	.01	1.09	1.87	.59	.013	.00	.00	PIPE	
.045	1	Ĭ	1	l	ĺ	.0125	1	1.05	1.07		1	1 .00	.00		
-9124.041	2674.702	1.127	2675.830	22.00	9.06	1.27	2677.10	.00	1.51	2.91	3.000	.000	.00	0	.0
-									-				-	-	
.539	.1499					.0113	.01	1.13	1.75	. 59	.013	.00	.00	PIPE	
			0.555 053	22.00	8.64	1.16	0.555		١	1	2 222			1	
-9123.502 -	2674.783		2675.951	22.00			2677.11	.00	1.51	2.93	3.000	.000	.00	0	. 0
.452	.1499	-	-	-	-	.0099	.00	1.17	1.63	.59	.013	.00		PIPE	
	1	1		I			l		1	1	1	1 1		1	
-9123.050	2674.851	1.210	2676.061	22.00	8.23	1.05	2677.11	.00	1.51	2.94	3.000	.000	.00	. 0	. 0
							1						-	-	
.366	.1499			e e		.0087	.00	1.21	1.52	.59	.013	.00	.00	PIPE	
-9122.684	2674.906	1 254	2676.160	22.00	7.85	.96	2677.12	.00	1.51	2.96	3.000	.000	.00	1	0
	· more a management			1	/.os 					• 2000000000000000000000000000000000000		ll		0	. 0
.281	.1499		-	-	-	.0076	.00	1.25	1.42	.59	.013	.00		PIPE	
\$ FILE: MAIN1 FACL3A.WSW W S P G W - CIVILDESIGN Version 14.08 PAGE 3															
FILE: MAIN1_FAC13A.WSW W S P G W - CIVILDESIGN Version 14.08 PAGE Program Package Serial Number: 7044															

WATER SURFACE PROFILE LISTING

Date: 3- 3-2016 Time:10:16:30

MAIN1_FAC13A.OUT

THE SEVENTY
GCW INC. PROJECT# 840.050
FILENAME: MAIN1_FAC13A.WSW

************************************													***		
Station	Invert Elev	Depth (FT)	Water Elev	Q (CFS)	Vel (FPS)	Vel Head	Energy Grd.El.		Critical Depth		Height/ DiaFT		ZL	No Wt	
beacton	Lice	(11)	DIC.	(CID)	- (220)	neuu	Gra.br.		_ Depen			- 1.5.		122/2	
L/Elem	Ch Slope	******	*******	*****	*****	SF Ave	HF	SE Dpth	Froude N	Norm Dp	"N"	X-Fall	ZR ****	Type	
		i													
-9122.402	2674.948	1.301	2676.249	22.00	7.48	.87	2677.12	.00	1.51	2.97	3.000	.000	.00	0	.0
.217	.1499			-		.0067	.00	1.30	1.33	.59	.013	.00	.00	PIPE	
-9122.186	2674.980	1.349	2676.330	22.00	7.14	.79	2677.12	.00	1.51	2.98	3.000	.000	.00	0	.0
-											-		-	-	
.152	.1499	ı			i .	.0059	.00	1.35	1.24	.59 I	.013	.00	.00	PIPE	
-9122.033	2675.003	1.399	2676.402	22.00	6.80		2677.12	.00	1.51	2.99	3.000	.000	.00	0	.0
		-											-	-	
.085	.1499					.0052	.00	1.40	1.15	. 59	.013	.00	.00	PIPE	
	1	1						j .	I		1	1			
-9121.948	2675.016	1.452	2676.468	22.00	6.49	.65	2677.12	00	1.51	3.00	3.000	.000	.00	. 0	.0
-	-	-									-		-	-	
.028	.1499		-			.0046	.00	1.45	1.08	.59	.013	.00	.00	PIPE	
	1											l			
-9121.920	2675.020	1.508	2676.528	22.00	6.18	.59	2677.12	.00	1.51	3.00	3.000	.000	.00	. 0	. 0
_]]				-	-	-	

MAIN1_FAC13B.WSW

T1	THE	SEVE	NTY			_			
T2	GC	M IN	C. PROJECT	# 840.0	50				
T3	FI	LENA	ME: MAIN1_	FAC13B.	WSW				
SO	91	87.8	102668.400	36		2675.65	5		
R	92	08.6	502669.840	36	.013			24.240	.000 1
R	92	38.3	302671.880	36	.013			.000	.000
SH	92	38.3	302671.880	36		.000			
CD	18	4		1.50	0				
CD	24	4		2.00	0				
CD	30	4		2.50	0				
CD	36	4		3.00	0				
CD	42	4		3.50	0				
CD	48	4		4.00	0				
CD	54	4		4.50	0				
CD	60	4		5.00	0				
CD	72	4		6.00	0				
Q			22.000	. 0					

MAIN1_FAC13B.OUT
W S P G W - CIVILDESIGN Version 14.08
Program Package Serial Number: 7044
WATER SURFACE PROFILE LISTING

Date: 3- 3-2016 Time:10:16:54

PAGE

THE SEVENTY
GCW INC. PROJECT# 840.050

f FILE: MAIN1_FAC13B.WSW

FILENAME: MAIN1_FAC13B.WSW															
******	Invert	Depth	Water	Q	Vel	Vel	Energy			Flow Top				No Wth	
Station -	Elev	(FT)	Elev -	(CFS)	(FPS)	Head	Grd.El.	Elev	Depth -	Width	DiaFT	or I.D.	ZL -	Prs/Pi	гþ
L/Elem	Ch Slope					SF Ave	HF		Froude N		"N"	X-Fall	ZR	Туре С	
*****	*******	*******	******	******	*****	*****	*****	******	******	******	******	******	****	*****	**
9187.810	2668.400	7.255	2675.655	22.00	3.11	.15	2675.81	.00	1.51	.00	3.000	.000	.00	, o .	.0
20.841	.0691	-				.0011	.02	.00	.00	.72	.013	.00	.00	PIPE	
	I	1	l 1		l		100.1011.4	1		1	l	l		1	
9208.650	2669.840	5.861	2675.701 	22.00	3.11	.15	2675.85	.00	1.51	.00	3.000	.000	.00	0 . I-	. 0
29.680	.0687	i i				.0011	.03	5.86	.00	.72	.013	.00	.00	PIPE	
9238.330	2671.880	3.853	2675.733	22.00	3.11	.15	2675.88	.00	1.51	.00	3.000	.000	.00	0 .	. 0
-										I			-	-	

Page 1

WSPGW ANALYSIS

MAIN 2

MAIN2.WSW T1 THE SEVENTY GCW INC. PROJECT# 840.050 FILENAME: MAIN2-RCB2.WSW -7519.0102698.462 15 T2 Т3 SHT 2703.115 S0 .015 -7413.7302706.021 15
-7319.4202712.792 15
-7198.3502721.485 15
-7059.4702724.374 15
-6981.7202725.991 15
-6923.1002727.210 15
-6798.3502729.805 15
-6749.9902730.821 15
-6739.8902731.030 15
-6609.8402733.736 15
-6609.8402733.736 15
-6230.9102740.485 15
-6230.9102740.485 15
-6230.9102740.485 15
-6034.8102753.537 15
-6083.2402754.647 18
-6052.2502757.619 18
-6034.0202759.370 18 89.000 -7413.7302706.021 15 .015 .015 .015 R .000 -62.000 .000 R R .015 30.000 R .000 R .015 .000 30.000 .015 R .015 .000 -42.000 15 15 48 .015 .015 23.000 2740.485 30.0 JX R .000 -45.000 .015 R .000 25.000 TS .015 .015 R .015 41.800 -6034.0202759.370
-6034.0202759.370
10 3 1 1.000
11 3 0 .000
12 3 0 .000
14 3 0 .000
15 3 0 .000
16 4 0 .000
17 4 0 .000
18 3 0 .000
19 3 0 .000
48 4 0 .000 .000 SH 18 25.000 17.000 25.000 15.000 12.000 12.000 .000 .000 CD .00 9.000 12.000 12.000 9.000 .000 .000 CD .00 .000 CD .00 CD .000 .000 .00 .000 .000 .00 CD 10.000 .000 .000 .00 CD 8.000 .00 6.000 .000 .000 .000 CD CD 4.000 .000 .000 .000 9.000 .00 20.000 CD .000 .000 20.000 .000 .000 CD 48 4 .000 4.000 .000 .000 .00 CD 0

.0

1910.000

♀ FILE: MAIN2.WSW

-7218.831

-|-20.481

♀ FILE: MAIN2.WSW

2720.014

.0718

MAIN2.OUT
W S P G W - CIVILDESIGN Version 14.08
Program Package Serial Number: 7044
WATER SURFACE PROFILE LISTING

30.52

14.46

THE SEVENTY GCW INC. PROJECT# 840.050
FILENAME: MAIN2-RCB2.WSW Depth | (FT) Q (CFS) Super |Critical|Flow Top|Height/|Base Wt| Elev | Depth | Width |Dia.-FT|or I.D.| Invert Vel Station Depth Prs/Pip L/Elem Ch Slope SF Ave SE Dpth Froude N Norm Dp X-Fall ZR Type Ch -7519.010 2703.210 40.71 8.00 10.000 .00 0 2698.462 1933.00 10.00 21.536 .0718 .0509 1.10 8.00 3.29 4.20 .015 .00 .00 BOX -7497.474 2700.008 2704.803 1933.00 40.31 25.24 2730.04 8.00 8.00 10.00 8.000 10.000 .00 0 .0472 .00 2711.050 .00 .00 0 -7413.730 2706.021 1933.00 38.44 22.94 2733.99 8.00 10.00 8.000 10.000 43.842 .0718 .0424 4.20 .00 .00 BOX 37.20 2709.169 -7369.888 2714.365 1933.00 21.49 2735.85 10.00 8.000 10.000 .00 0 5.196 .0718 .00 .00 BOX .00 -7319.420 2712.792 5.450 2718.242 1933.00 35.47 19.53 8.00 8.00 10.00 8.000 10.000 0 .0 .0718 .0354 6.813 8.00 2.68 4.20 .015 .00 .00 BOX 19.25 -7312.607 2713.281 2738.02 2718.772 1933.00 8.00 10.00 8.000 10.000 .00 0 38.146 .0718 .0330 1.26 .015 .00 .00 2.65 BOX 10.00 -7274.460 2716.020 5.759 2721.779 1933.00 33.57 17.50 2739.28 8.00 8.00 8.000 10.000 .00 0 .0 30,661 .0718 .0291 .89 8.00 2.47 4.20 .015 .00 .00 BOX -7243.800 2718.222 6.040 2724.261 1933.00 32.01 15.91 2740.17 10.00 8.000 10.000 0 .0257 .0718 4.20 24.969 .64 14.46 2740.81 -|-.0227 .64 2.30 .015 .00 .00 BOX

W S P G W - CIVILDESIGN Version 14.08 Program Package Serial Number: 7044 WATER SURFACE PROFILE LISTING Date: 3- 2-2016 Time: 6:22:33 THE SEVENTY

.47

8.00

10.00

4.20

-1-

8.000

.015

10.000

.00 0

.00 BOX

PAGE

Date: 3- 2-2016 Time: 6:22:33

GCW INC. PROJECT# 840.050 FILENAME: MAIN2-RCB2.WSW SHT															
*****	******	*****	FILENAME	: MAIN2-RO	CB2.WSW	SHT *****	*****	*****	****	*****	*****	******	****	****	***
Station	Invert Elev	Depth (FT)	Water Elev	Q (CFS)	Vel (FPS)	Vel Head	Energy Grd.El.	Super Elev	Critical Depth	Flow Top Width	Height/ DiaFT		ZL	No W	
L/Elem	Ch Slope	******	*****	*****		SF Ave	HF	SE Dpth	Froude N	Norm Dp	"N"	X-Fall	ZR *****	Type	Ch ***
-7198.350	2721.485	6.644 	2728.129	1933.00	 29.10 -	13.15	2741.27	.00	8.00	10.00	8.000	10.000	.00	0	.0
138.880	.0208				r r	.0214	2.98	6.64	1.99	6.71	.015	.00	.00	вох	
-7059.470	1 2724.374 I-	6.614	2730.988	1933.00	l 29.23 -	13.27	2744.25	.00	8.00	10.00 	8.000	10.000	.00	0	.0
77.750	.0208					.0217	1.68	6.61	2.00	6.71	.015	.00	.00	вох	
-6981.720	2725.991	6.591	2732.582	1933.00	29.33	13.36	2745.94	8.00	8.00	10.00	8.000	ˈ 10.000 ˈ	.00	0	.0
58.620	.0208	[]	1		- 	.0218	1.28	8.00	2.01	6.71	.015	.00	.00	BOX	
-6923.100	2727.210	6.571	2733.781	1933.00	29.42	13.44	2747.22	.00	8.00	10.00	8.000	10.000	.00	0	.0
124.750	.0208		-		- 	.0222	2.77	6.57	2.02	6.71	.015	.00	.00	BOX	
-6798.350	2729.805	6.517	2736.322	1933.00	29.66	13.66	2749.98	.00	8.00	10.00	8.000	10.000	.00	0	.0
48.360	.0210	[]	,j		- 	.0225	1.09	6.52	2.05	6.68	.015	.00	.00	BOX	
-6749.990	2730.821	6.494	2737.315	1933.00	29.77	13.76	2751.07	8.00	8.00	10.00	8.000	10.000	.00	0	.0
10.100	.0207	[]	,)· · · · ·		- 	.0226	.23	8.00	2.06	6.72	.015	.00	.00	BOX	
-6739.890	2731.030	6.488	2737.518	1933.00	29.79	13.78	2751.30	.00	8.00	10.00	8.000	10.000	.00	0	.0
130.050	.0208	 	,)· ·		- 	.0231	3.00	6.49	2.06	6.71	.015	.00	.00	BOX	
-6609.840	2733.736	6.400	2740.136	1933.00	30.20	14.17	2754.30	1.25	8.00	10.00	8.000	10.000	.00	0	.0
9.033	.0100	1			ı .	.0236	.21	7.65	2.10	8.00	.015	.00	.00	вох	
-6600.807	2733.826	6.364	2740.190	1933.00	1 30.37 -	14.33	2754.52	1.27	8.00	10.00	8.000	10.000	.00	0	.0
73.857	.0100			ws		.0254	' 1.87 SIGN Versio	7.63	2.12	8.00	.015	.00	.00	вох	2
የ FILE: MAI	LINZ . WOW		Program	Package S	erial Numb			JII 14.08					D1	PAGE	3

WATER SURFACE PROFILE LISTING Date: 3- 2-2016 Time: 6:22:33 THE SEVENTY PROJECT# 840.050 FILENAME: MAIN2-RCB2.WSW Vel (FPS) Water Elev Q (CFS) Vel Head

			. 1	MAIN2.OUT								
L/Elem Ch Slope	*****	*****	SF Ave	HF *****	SE Dpth	Froude N	Norm Dp	"N"	X-Fall *****	ZR	Type	Ch
-6526.950 2734.565	6.068 2740.633	1933.00 31.	86 15.76	2756.39	.00	8.00	10.00	8.000	10.000	.00	1	0
-6526.950 2734.565 - -	-	-	-							-	1-	.0
JUNCT STR .0200			.0333	9.85	6.07	2.28		.015	.00	.00	BOX	
-6230.910 2740.485	5.194 2745.679	1910.00 36.	77 21.00	2766.67	.00	8.00	10.00	8.000	10.000	.00	0	.0
.523 .0959	-)	- , -1-	.0396	.02	5.19	2.84	3.75	.015	.00	.00	BOX	
l l			000000000000000000000000000000000000000					I	1 1		1	
-6230.387 2740.535	5.198 2745.734	1910.00 36.	74 20.96	2766.70	.00	8.00	10.00	8.000	10.000	.00	0	.0
28.127 .0959	9		.0372	1.05	5.20	2.84	3.75	.015	.00	.00	вох	
-6202.259 2743.233	5.452 2748.685	1910.00 35.		2767.74	.00	8.00	10.00	8.000	10.000	.00	0	.0
23.230 .0959	-]	-	-	.76	5.45	2.64	3.75	.015	.00	.00	BOX	
	5 740 2754 470	1 1010 00 1			1			1	1 1		1	^
-6179.029 2745.461	5.718 2751.179	1910.00 33.	40 17.32	2768.50	.00	8.00	10.00	8.000	10.000	.00	0	.0
19.349 .0959			.0289	.56	5.72	2.46	3.75	.015	.00	.00	BOX	
-6159.681 2747.316	5.997 2753.313	1910.00 31.	85 15.75	2769.06	.00	8.00	10.00	8.000	10.000	.00	0	.0
16.190 .0959	-	-	- .0255	 .41	6.00	l 2.29	 3.75	.015	.00	.00	BOX	
1	1	l I	DOMESTIC .		1						1	12
-6143.490 2748.869	6.290 2755.159	1910.00 30.	37 14.32	2769.48	8.00	8.00	10.00	8.000	10.000	.00	0	.0
.647 .0959			.0239	.02	8.00	2.13	3.75	.015	.00	.00	вох	
-6142.842 2748.931	6.303 2755.234	1910.00 30.	30 14.26	2769.49	8.00	8.00	10.00	8.000	10.000	.00	0	.0
13.462 .0959	-]	-	-	 .30	8.00	- 2.13	 3.75	.015	.00	.00	BOX	
1	1	1				1	100,000,000	1		1	1	
-6129.380 2750.222	6.611 2756.833	1910.00 28.	89 12.96	2769.79	8.00	8.00	10.00	8.000	10.000	.00	1-0	.0
11.255 .0959	-1	i -	.0199	.22	8.00	1.98	3.75	.015	.00	.00	вох	
₹ FILE: MAIN2.WSW	150	WSPGW		IGN Versi	on 14.08					F	PAGE	4
Program Package Serial Number: 7044												

THE SEVENTY

GCW INC. PROJECT# #80.050

ETH SAME OF THE SEVENTY

GCW INC. PROJECT# #80.050

ETH SAME OF THE SEVENTY

GCW INC. PROJECT# #80.050

ETH SAME OF THE SEVENTY

SET SAME OF THE SEVENTY

SET SAME OF THE SEVENTY

SET SAME OF THE SEVENTY

SET SAME OF THE SEVENTY

SET SAME OF THE SEVENTY

SET SAME OF THE SEVENTY

SET SAME OF THE SEVENTY

SET SAME OF THE SEVENTY

SET SAME OF THE SEVENTY

SET SAME OF THE SEVENTY

SET SAME OF THE SEVENTY

SET SAME OF THE SEVENTY

SET SAME OF THE SEVENTY

SET SAME OF THE SEVENTY

SET SAME OF THE SEVENTY

SET SAME OF THE SEVENTY

SET SAME OF THE SEVENTY

SET SAME OF THE SEVENTY

SET SAME OF THE SEVENTY

SET SAME OF THE SEVENTY

SET SAME OF THE SEVENTY

SET SAME OF THE SEVENTY

SET SAME OF THE SEVENTY

SET SAME OF THE SEVENTY

SET SAME OF THE SEVENTY

SET SAME OF THE SEVENTY

SET SAME OF THE SEVENTY

SET SAME OF THE SEVENTY

SET SAME OF THE SEVENTY

SET SAME OF THE SEVENTY

SET SAME OF THE SEVENTY

SET SAME OF THE SEVENTY

SET SAME OF THE SEVENTY

SET SAME OF THE SEVENTY

SET SAME OF THE SEVENTY

SET SAME OF THE SEVENTY

SET SAME OF THE SEVENTY

SET SAME OF THE SEVENTY

SET SAME OF THE SEVENTY

SET SAME OF THE SEVENTY

SET SAME OF THE SEVENTY

SET SAME OF THE SEVENTY

SET SAME OF THE SEVENTY

SET SAME OF THE SEVENTY

SET SAME OF THE SEVENTY

SET SAME OF THE SEVENTY

SET SAME OF THE SEVENTY

SET SAME OF THE SEVENTY

SET SAME OF THE SEVENTY

SET SAME OF THE SEVENTY

SET SAME OF THE SEVENTY

SET SAME OF THE SEVENTY

SET SAME OF THE SEVENTY

SET SAME OF THE SEVENTY

SET SAME OF THE SEVENTY

SET SAME OF THE SEVENTY

SET SAME OF THE SEVENTY

SET SAME OF THE SEVENTY

SET SAME OF THE SEVENTY

SET SAME OF THE SEVENTY

SET SAME OF THE SEVENTY

SET SAME OF THE SEVENTY

SET SAME OF THE SEVENTY

SET SAME OF THE SEVENTY

SET SAME OF THE SEVENTY

SET SAME OF THE SEVENTY

SET SAME OF THE SEVENTY

SET SAME OF THE SEVENTY

SET SAME OF THE SEVENTY

SET SAME OF THE SEVENTY

SET SAME OF THE SEVENTY

SET SAME OF THE SEVENTY

SET SAME OF THE SEVENTY

SET SAME OF THE SEVENTY

SET SAME OF THE SEVENTY

SE

FILENAME: MAIN2-RCB2.WSW SHT											
	Wth rs/Pip										
	/pe Ch										
-6118.125 2751.301 6.933 2758.235 1910.00 27.55 11.78 2770.02 8.00 8.00 10.00 8.000 10.000 .00 0	0. 0										
9.358 .0959 ' ' .0176 .16 8.00 1.84 3.75 .015 .00 .00 Bo	X										
-6108.767 2752.199 7.272 2759.470 1910.00 26.27 10.71 2770.18 8.00 8.00 10.00 8.000 10.000 .00 0	0.0										
- -	iΧ										
-6101.061 2752.938 7.627 2760.564 1910.00 25.04 9.74 2770.30 8.00 10.00 8.00 10.00 10.00 0	0. 0										
6.250 .0959	X										
-6094.810 2753.537 8.000 2761.537 1910.00 23.88 8.85 2770.39 .00 8.00 10.00 8.000 10.000 .00 0	.0										
TRANS STR .0959 .0015 .000 .000 B0	X										
-6083.240 2754.647 15.899 2770.546 1910.00 10.61 1.75 2772.29 .00 6.57 20.00 9.000 20.000 .00 0	0.0										
30.990 .0959 .0025 .08 .00 .62 2.14 .015 .00 .00 BO	iΧ										
-6052.250 2757.619 13.190 2770.809 1910.00 10.61 1.75 2772.56 .00 6.57 20.00 9.000 20.000 .00 0	0. 0										
18.230 .0961 .0025 .05 .00 .62 2.13 .015 .00 .00 B0	iΧ										
-6034.020 2759.370 11.723 2771.094 1910.00 10.61 1.75 2772.84	0.0										

WSPGW ANALYSIS

MAINLINE 2 LATERALS

MAIN2-RCP6.WSW

T1	THE	TWO	FIFTY									
T2	GC	W II	NC. PROJ	ECT#	840.05	0						
T3	FI	LENZ	AME: MAI	N-RCP	6.WSW	SHT						
SO	-62	30.	9302741.	000 4	8		27	48.635				
R	-61	57.	6002742.	480 4	8	.013				-48.500	.000 1	
R	-58	02.	5302764.	240 4	8	.013				0.000	.000 0	
SH	-58	02.	5302764.	240 4	8			.000				
CD	18	4			1.500							
CD	24	4			2.000							
CD	30	4			2.500							
CD	36	4			3.000							
CD	42	4			3.500							
CD	48	4			4.000							
CD	54	4			4.500							
CD	60	4			5.000							
CD	72	4			6.000				*			
Q			54.000	. 0								

MAIN2-RCP6.OUT W S P G W - CIVILDESIGN Version 14.08

Program Package Serial Number: 7044
WATER SURFACE PROFILE LISTING

THE TWO FIFTY GCW INC. PROJECT# 840.050 FILENAME: MAIN-RCP6.WSW SHT

♀ FILE: MAIN2-RCP6.WSW

♀ FILE: MAIN2-RCP6.WSW

Invert Depth Water 0 Vel Vel Energy Super |Critical|Flow Top|Height/|Base Wt No Wth Prs/Pip Station (CFS) (FPS) Head Grd.El. Elev Depth Width Dia.-FT or I.D. 21. L/Elem Ch Slope SF Ave HF SE Dpth Froude N Norm Dr "N" X-Fall ZR Type Ch .000 -6230.930 2741.000 2748.635 .29 2748.92 .00 .00 4.000 .00 0 .0202 73.330 .0014 .10 .00 .00 1.40 .013 .00 .00 PIPE 0 .00 .000 -6157.600 2742 480 6.315 2748.795 54.00 4.30 .29 2749.08 .00 2.21 4.000 .00 . 0 .0014 1.05 .013 .00 PIPE 34.604 .0613 .05 6.32 .00 .00 2744.601 2748.844 2749.13 .00 4.000 .000 .00 0 .0 -6122.996 4.243 54.00 4.30 .29 HYDRAULIC . 0 -6122.996 2744.601 1.054 2745.654 54.00 20.43 6.48 2752.13 .00 2.21 3.52 4.000 .000 .00 0 .013 5.583 .0613 .0613 .34 1.05 4.16 1.05 .00 .00 PIPE 20.43 2752.47 .00 2.21 3.52 4.000 .000 .00 0 -6117.414 2744.943 1.054 2745.996 54.00 6.48 . 0 .0583 8.38 1.05 .013 .00 .00 PIPE 143.660 .0613 1.05 4.16 4.000 .000 .00 0 -5973.753 2753.747 1.081 2754.828 .00 .0613 0519 2.81 1.08 3.95 1.05 .013 .00 PIPE -5919.565 2757.068 1.118 2758.186 54.00 18.78 5.48 2763 66 0.0 2 21 3 59 4 000 000 0.0 n 1.05 .013 .00 28.844 .0613 .0454 1.31 1.12 3.70 .00 PIPE 0 17.90 2764.97 .00 2.21 4.000 .000 .00 -5890.721 2758.835 1.157 2759.992 54.00 4.98 3.63 .00 19.126 .0613 2760.007 2761.204 17.07 4.53 2765.73 .00 2.21 3.66 4.000 .000 .00 0 -5871.595 1.197 54.00 13.930 0613 0348 48 1 20 3 24 1.05 .013 0.0 0.0 PTPE

PAGE

PAGE

Date: 2-24-2016 Time: 5:34: 1

Date: 2-24-2016 Time: 5:34: 1

W S P G W - CIVILDESIGN Version 14.08 Program Package Serial Number: 7044 WATER SURFACE PROFILE LISTING Date: 2-24-2016 Time: 5:34: 1 THE TWO FIFTY

GCW INC. PROJECT# 840.050 FILENAME: MAIN-RCP6.WSW ******* Vel |Critical|Flow Top|Height/|Base Wt No Wth Water Energy Super Invert Depth Station Elev (FT) Elev (CFS) (FPS) Head Grd.El. Elev Depth Width Dia.-FT or I.D. ZL Prs/Pip SF Ave ZR HF SE Doth Froude N X-Fall L/Elem Ch Slope Norm Dp Type Ch -5857.665 2760 861 1.239 2762.100 54.00 16.28 4.11 2766.21 .00 2.21 3.70 4.000 .000 .00 0 . 0 10.701 .0613 .0304 .33 1.24 3.03 1.05 .013 .00 .00 PIPE 1.283 2762.800 3.74 .00 2.21 0 -5846.964 2761.517 54.00 15.52 2766.54 3.73 4.000 .000 .00 .0267 .23 1.05 .013 PIPE 4.000 .000 -5838.441 2762.039 1.328 2763.367 54.00 14.80 3.40 2766.77 .00 2.21 3.77 .00 0 . 0 6 911 0613 .0234 .16 1.33 2.65 1.05 .013 .00 .00 PIPE -5831.530 2762.463 1.375 2763.838 54.00 14.11 3.09 2766.93 .00 2.21 3.80 4.000 .000 .00 0 .0613 .0205 .12 2.48 1.05 .013 .00 PIPE 5.685 1.38 .00 3.83 4.000 .000 0 -5825.846 2762.81 2764.235 13.45 .00 54.00 4.718 .0613 .0180 .08 1.42 2.32 1.05 .013 .00 .00 PIPE -5821.128 2763.100 1.475 2764.575 54.00 12.83 2 55 2767 13 0.0 2 21 3 86 4 000 000 0.0 0 .06 1.05 .013 3.935 .0613 .0157 1.48 2.16 .00 .00 PIPE 2767.19 .00 2.21 4.000 0 1.528 12.23 2.32 3.89 .000 .00 -5817.193 2763.341 2764.869 54.00 .0138 . 05 1.05 .013 .00 .00 .0613 1.53 3.267 2.11 2767.24 4.000 .000 -5813.926 2763.542 1.584 2765.125 54.00 11.66 .00 3.91 .00 0 .0121 .03 1.05 .013 .00 .00 PIPE .0613 .000 -5811.182 2763.710 1.641 2765.351 54.00 11.12 1.92 2767.27 .00 2.21 3.94 4.000 .00 0 -|-2.260 .0613 .0106 .02 1.64 .013 1.76 1.05 .00 .00 PIPE 우 FILE: MAIN2-RCP6.WSW W S P G W - CIVILDESIGN Version PAGE

Page 1

WATER SURFACE PROFILE LISTING

Program Package Serial Number: 7044

MAIN2-RCP6.OUT

THE TWO FIFTY
GCW INC. PROJECT# 840.050
FILENAME: MAIN-RCP6.WGW SHT

***************************************												***			
Station	Invert Elev	Depth (FT)	Water Elev	Q (CFS)	Vel (FPS)	Vel Head	Energy Grd.El.	Super Elev	Critical Depth	Flow Top	Height/ DiaFT		ZL	No Wt Prs/P	
L/Elem ******	Ch Slope	******	******	*****	******	SF Ave *****	HF *****	SE Dpth	Froude N	Norm Dp	******	X-Fall *****	ZR ****	Type ****	
-5808.921	2763.848 		2765.549 	54.00	 10.60 		2767.29		2.21 			.000 	.00	-	.0
1.841	.0613 2763.961	1.764	2765.725	54.00	10.11	1.59	.02	1.70	1.65	1.05 3.97	.013 4.000	.00 .000	.00	PIPE 0	.0
1.492	.0613			-		.0082	.01	 1.76	1.54	1.05	.013	.00	.00	- PIPE	
-5805.588	2764.052	1.829	2765.882 	54.00	9.64 	1.44	2767.32	.00 1.83	2.21	3.99 1.05	4.000 .013	.000 	.00	-	.0
1.148	.0613 2764.123	1.898	2766.021	54.00	9.19	1.31		.00	2.21	3.99	4.000	.000	.00	PIPE 0	. 0
.858	.0613	 	 -		 	.0064	.01	 1.90 	1.33	 1.05 	.013	.00 .00	.00	PIPE	
-5803.582 - .599	2764.176	1.970	2766.146 	54.00	8.76 	1.19	2767.34	.00 1.97	2.21	4.00 1.05	4.000	.000	.00	0 - PIPE	. 0
-5802.983 - .346	2764.212	2.045	 2766.257 	54.00	 8.35 	1.08	2767.34	.00	 2.21 1.16	4.00	4.000	.000 	.00	1	.0
-5802.637 - .107	2764.233 0613		 2766.357 	54.00 	 7.96 	.98	2767.34 	.00 2.12	 2.21 1.08	3.99 1.05	 4.000 .013	.000 .00	.00	0 - PIPE	.0
-5802.530 -	2764.240 -	2.209 		54.00 	 7.59 		2767.34 	 	 - 2.21 	3.98 	4.000 	.000 	.00	 -	.0

MAIN2_FAC16C.WSW

T1 THE SEVENTY	a to the contraction of the second se
T2 GCW INC. PROJECT# 840.050	
T3 FILENAME: MAIN2_FAC16C.WSW SHT	
so -6220.9102741.560 48	2745.679
R -6157.5802745.110 48 .013	-48.500 .000 1
R -5802.5102764.240 48 .013	0.000 .000 0
SH -5802.5102764.240 48	.000
CD 18 4 1.500	
CD 24 4 2.000	
CD 30 4 2.500	
CD 36 4 3.000	
CD 42 4 3.500	
CD 48 4 4.000	
CD 54 4 4.500	
CD 60 4 5.000	
CD 72 4 6.000	
Q 54.000 .0	

♀ FILE: MAIN2 FAC16C.WSW PAGE

1

PAGE

.013

.00

.00 PIPE

Date: 3- 3-2016 Time: 10: 1:21

MAIN2_FAC16C.OUT
W S P G W - CIVILDESIGN Version 14.08
Program Package Serial Number: 7044
WATER SURFACE PROFILE LISTING

	WATER SURFACE	PROFILE LI	ISTING		I	Date: 3-	3-2016	Time:1	0: 1:2	.1	
THE SEVENTY	0.00										
GCW INC. PROJECT# 840.050 FILENAME: MAIN2_FAC16C.WSW SHT											
***************************************	******	*****	*****	******	******	*****	*****	****	****	**	
Invert Depth Water Q	vel vel	Energy	Super	Critical	Flow Top	Height/	Base Wt		No Wt		
Station Elev (FT) Elev (CFS)	(FPS) Head	Grd.Ēl.	Elev	Depth	Width	DiaFT	or I.D.	ZL	Prs/F	'ip	
L/Elem Ch Slope	SF Ave	- HF	 SE Dpth	Froude N	 Norm Dp	- "N" -	X-Fall	ZR -	Туре	ch	
********* ******* ******* ******* ******	SF AVE	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3E DP LII	*****	******	****		****	1 ype	***	
	•								i		
-6220.910 2741.560 1.082 2742.642 54.00	19.67 6.01	2748.65	.57	2.21	3.55	4.000	.000	.00	0	.0	
- -		- 2.45	- -	- 2.05	- 1 00 -		.00	- 00	-		
63.330 .0561	.0545	3.45	1.65	3.95	1.08	.013	.00	.00	PIPE		
-6157.581 2745.110 1.089 2746.198 54.00	19.51 5.91	2752.11	.00	2.21	3.56	4.000	.000	.00	0	.0	
- -		-						-	-		
37.031 .0539	.0539	2.00	1.09	3.90	1.09	.013	.00	.00	PIPE		
-6120.550 2747.105 1.089 2748.194 54.00	19.51 5.91	2754.10	.00	2.21	3.56	4.000	.000	.00	1	.0	
-0120.330 2747.103 1.069 2748.134 34.00	11		I00	- 2.21	J. J I		1	00	1-	. 0	
147.574 .0539	.0511	7.55	1.09	3.90	1.09	.013	.00	.00	PIPE		
5000 000 0000 0000 0000 0000 0000 0000	10 70 5 10	2761 65	00	2 21	2.50	4 000		00	1	•	
-5972.976 2755.056 1.118 2756.174 54.00 -1-	18.78 5.48	2761.65	.00	2.21	3.59	4.000	.000	.00	0	.0	
53.987 .0539	.0454	2.45	1.12	3.70	1.09	.013	.00	.00	PIPE		
									1		
-5918.988 2757.964 1.157 2759.121 54.00	17.90 4.98	2764.10	.00	2.21	3.63	4.000	.000	.00	0	.0	
29.132 .0539	 .0397	1 16	1.16	3.46	1.09	.013	.00	00	- -		
29.132 .0539	.0397	1.16	1.10	3.40	1.09	.013		.00	PIPE		
-5889.856 2759.534 1.197 2760.731 54.00	17.07 4.53	2765.26	.00	2.21	3.66	4.000	.000	.00	0	.0	
- -								-	l		
19.329 .0539	.0348	.67	1.20	3.24	1.09	.013	.00	.00	PIPE		
-5870.527 2760.575 1.239 2761.814 54.00	16.28 4.11	2765.93	.00	2.21	3.70	4.000	.000	.00	0	.0	
- -	[-	1-		
14.085 .0539	.0304	.43	1.24	3.03	1.09	.013	.00	.00	PIPE		
-5856.442 2761.334 1.283 2762.617 54.00	15.52 3.74	2766.36	.00	2.21	3.73	4.000	.000	.00	١ ،	.0	
-3636.442 2/61.334 1.263 2/62.61/ 34.00				- 2.21	l			00	1-	.0	
10.843 .0539	.0267	.29	1.28	2.83	1.09	.013	.00	.00	PIPE		
-5845.599 2761.918 1.328 2763.247 54.00	14.80 3.40	2766.65	.00	2.21	3.77	4.000	.000	.00	0	.0	
8.589 .0539	.0234	.20	1.33	2.65	1.09	.013	 .00	.00	PIPE		
f FILE: MAIN2_FAC16C.WSW W S P				2.05	1.05	.013	.00		PAGE	2	
Brognam Backage Son	mial Numbers 70										

Program Package Serial Number: 7044
WATER SURFACE PROFILE LISTING Date: 3- 3-2016 Time:10: 1:21 THE SEVENTY PROJECT# 840.050 *********** ****** vel Super Elev |Critical|Flow Top|Height/|Base Wtl Invert Depth Water Energy Grd.El. INO Wth Station Elev (CFS) Head Depth width or I.D. L/Elem SF Ave Froude N Norm Dp ZR Ch Slope SE Dpth -5837.010 2762.381 2763.756 3.09 .00 3.80 4.000 .000 .00 0 .0205 .013 1.38 2.48 1.09 .00 6.945 .0539 14 .00 PIPE 4.000 -5830.064 2762.755 1.424 2764.179 54.00 13.45 2.81 2766.99 .00 3.83 .000 .00 0 .0 .013 5.690 .0539 .0180 .10 1.42 2.32 1.09 .00 .00 PIPE 0 -5824.374 2763.062 2764.537 54.00 12.83 2.55 2767.09 .00 2.21 3.86 4.000 .000 .00 .0 .013 4.699 .0539 .0157 .07 1.48 2.16 1.09 .00 .00 PIPE -5819.675 2.32 0 2763.315 1.528 2764.843 2767.17 .00 3.89 4,000 .000 .00 54.00 12.23 2.21 .0 3.871 .0539 .0138 .05 1.53 2.02 1.09 .013 .00 .00 PIPE -5815.804 2763.524 .00 3.91 4.000 0 1.584 2765,108 2.11 2767.22 2.21 .000 .00 54.00 11.66 .0 3.231 .0539 .0121 1.09 .013 .00 .00 PIPE 1.641 1.92 .00 4.000 0 -5812.573 2763.698 2765.339 54.00 11.12 2767.26 2.21 3.94 .000 .00 2.647 .0539 .0106 .03 1.76 1.09 .013 .00 .00 PIPE 1.74 2767.29 .00 4.000 0 -5809.925 2763.840 1.701 2765.542 54.00 10.60 2.21 3.96 .000 .00 0 2.147 .0539 .0093 .013 .00 1.65 .00 PIPE .00 -5807.778 2763.956 1.764 2765.720 54.00 10.11 1.59 2767.31 2.21 3.97 4.000 .000 .00 0 1.734 .0539 .0082 .01 1.76 1.54 1.09 .013 .00 .00 PIPE 2764.050 -|-1.331 E: M^--2767.32 .00 2.21 9.64 3.99 0 -5806.044 1.829 2765.879 54.00 1.44 4.000 .000 .00 |-PIPE .0072 .01 1.43 1.09 .013 .00 .00

W S P G W - CIVILDESIGN Version 14.08
Program Package Serial Number: 7044
WATER SURFACE PROFILE LISTING Date: 3- 3-2016 Time:10: 1:21 THE SEVENTY GCW INC. PROJECT# 840.050

FILENAME: MAIN2_FAC16C.WSW SHT Invert Depth Water Ve1 Energy Grd.El. Super |Critical|Flow Top|Height/|Base Wt| | Depth | Width |Dia.-FT|or I.D.| INO Wth Station Elev (FT) (CFS) (FPS) Head Depth ZL Prs/Pip SF Ave Norm Dp X-Fall ZR L/Elem Ch Slope SE Dpth Froude N Type Ch -5804.714 2764.121 1.898 2766.020 54.00 9.19 2767.33 .00 3.99 4.000 .000 .00 0 1.31 -1-

Page 1

.01

1.90

1.33

1.09

.0064

FILE: MAIN2_FAC16C.WSW

.992

.0539

V Va			1	MAIN2_	FAC16C.OUT							
-5803.722 2764.175	1.970 2766.145	54.00	8.76	1.19	2767.34	.00	2.21	4.00	4.000 -	.000 .00	0	.0
.690 .0539	- -	-1-	-1-	.0056	.00	1.97	1.24	1.09	.013	.00 .00	PIPE	
-5803.031 2764.212	2.045 2766.257	54.00	8.35	1.08	2767.34	.00	2.21	4.00	4.000 '	.000 .00	-	.0
.398 .0539	1 1	1	i.	.0049	.00	2.05	1.16	1.09	.013	.00 .00	PIPE	
-5802.633 2764.233 -1-	2.124 2766.357	54.00	7.96	.98	2767.34	.00	2.21	3.99	4.000 -	.000 .00	-	.0
.124 .0539	i i	i		.0043	.00	2.12	1.08	1.09	.013	.00 .00	PIPE	
-5802.510 2764.240 - -	2.209 2766.448	54.00 - -	7.59	.89	2767.34	.00	2.21	3.98	4.000 -	.000 .00	0 -	.0

MAIN2_FAC17.WSW

T1	THE SEVE	YTY					
T2	GCW INC	C. PROJECT	г# 840.0	050			
T3	FILENA	ME: MAIN1_	_FAC17.\	WSW			
SO	-6739.99	902733.420) 42		2737.51		
R	-6682.90	002744.240) 42	.013		. (.000
SH	-6682.90	002744.240) 42		.000		
CD	18 4		1.50				
CD	24 4		2.00				
CD	30 4		2.50				
CD	36 4		3.00				
CD	42 4		3.50				
CD	48 4		4.00				
CD	54 4		4.50				
CD	60 4		5.00				
CD	72 4		6.00	00			
Q		51.000	.0				

MATN2 FAC17 OUT WS PGW - CIVILDESIGN Version 14.08 Program Package Serial Number: 7044 ♀ FILE: MAIN2_FAC17.WSW

PAGE

WATER SURFACE PROFILE LISTING

Date: 3- 3-2016 Time:10: 3:42 THE SEVENTY GCW INC. PROJECT# 840.050 FILENAME: MAIN1_FAC17.WSW Energy | Super | Critical | Flow Top | Height / | Base Wt | Grd.El. | Elev | Depth | Width | Dia.-FT | or I.D. | Depth Q (CFS) vel Station (FPS) Head Elev L/Elem SF Ave Froude N Norm Dp Type Ch Ch Slope HE SE Dpth X-Fall 7R 0 51.00 24.89 9.62 2743.97 .00 2.23 3.500 .000 .00 -6739.9902733.420 .930 2734.350 3.09 .0 .1067 .93 .013 .00 .00 1.454 .1895 5.39 PIPE 24.72 0 .00 .000 .00 -6738.536 2733.696 .934 2734.630 51.00 9.49 2744.12 2.23 3.10 3.500 .00 .013 .00 9.182 .1895 .0990 .91 .93 5.34 .81 PIPE 0 2745.03 .00 2.23 3.13 3.500 .000 .00 -6729.354 2735.436 .966 2736.402 51.00 23.57 8.63 7.295 .1895 .0867 .63 .97 5.00 .81 .013 .00 .00 PIPE -6722.059 2736.818 1.000 2737.818 51.00 22.48 7.84 2745.66 .00 2.23 3.16 3.500 .000 .00 0 .1895 .0759 1.00 .013 .00 .00 PIPE 5.966 .45 4.68 .81 2746.12 0 -6716.093 2737.949 1.035 2738.984 51.00 .00 3.19 3.500 .000 .00 .013 .00 4.973 .1895 .0664 . 33 1.04 4.38 .81 .00 PIPE -6711.120 2738.892 1.071 2739.963 51.00 20.43 6.48 2746.45 .00 2.23 3.23 3.500 .000 .00 0 .1895 .0581 1.07 .81 .013 .00 4.204 .24 4.09 .00 PIPE 1.108 3.500 .000 .00 0 -6706.917 2739.688 2740.796 51.00 19.48 5.89 2746.69 .00 .0509 .013 3.583 .1895 .18 1.11 3.83 .81 .00 PIPE 1.147 .00 3.500 .000 0 -6703.333 2740.367 2741.515 51.00 18.58 5.36 2746.87 2.23 3.29 .00 . 0 .013 3.078 .1895 .0446 .14 1.15 3.58 .81 00 00 PTPF .00 2.23 3.31 3.500 .000 .00 0 -6700.255 2740.951 1.188 2742.139 51.00 4.87 2747.01 17.71 2.664 1895 0391 10 1 19 3.35 .81 .013 .00 .00 PIPE file: MAIN2_FAC17.WSW G W - CIVILDESIGN Version 14.08 Program Package Serial Number: 7044 WATER SURFACE PROFILE LISTING Date: 3- 3-2016 Time:10: 3:42 THE SEVENTY GCW INC. PROJECT# 840.050 FILENAME: MAIN1_FAC17.WSW ******* Energy Grd.El. Super Elev Depth Invert Station (CFS) (FPS) Head Prs/Pip Elev Elev SF Ave 2742.686 -6697.591 2741.456 1.230 51.00 16.89 4.43 2747.11 .00 2.23 3.34 3.500 .000 .00 0 2.309 .1895 .0343 .08 1.23 3.13 .81 .013 .00 .00 PIPE 1.274 0 -6695.282 2741.893 2743.167 51.00 16.10 4.03 2747.19 .00 2.23 3.37 3.500 .000 .00 .0300 .013 .1895 1.27 2.93 .81 .00 .00 2.006 .06 PIPE -6693.276 2742.273 1.320 2743.594 51.00 15.35 3.66 2747.25 .00 2.23 3.39 3.500 .000 .00 0 .0264 .013 1.745 .1895 .05 1.32 2.73 .81 .00 .00 PIPE -6691.532 2742.604 1.368 2743.972 51.00 14.64 3.33 .00 3.42 3.500 000 .00 0 .013 1.523 .1895 .0231 .04 1.37 2.55 . 81 - 00 .00 PTPF -6690.009 51.00 .00 3.500 .000 .00 0 2742.893 2744.310 13.96 3.02 2747.33 3.44 1.317 .013 .0203 1895 .03 1.42 2.38 .81 .00 .00 PTPF 3.500 0 -6688.691 2743.142 1.469 2744.611 51.00 13.31 2.75 2747.36 .000 .0178 .02 2.23 .013 1.141 .1895 1.47 .81 .00 .00 PTPF .000 -6687.550 2743.359 1.523 2744.882 51.00 12.69 2.50 2747.38 .00 2.23 3.47 3.500 .00 0 . 0 .013 .0157 985 .1895 02 2.08 .81 .00 .00 PTPF .00 .000 0 2745.124 12.10 2.27 2747.40 2.23 3.48 3.500 .00 -6686.565 2743.545 51.00 .839 .1895 .0138 .01 1.58 1.94 .81 .013 .00 .00 PIPE 1 2743.704 1.638 2.07 2747.41 .00 2.23 3.49 3.500 .000 .00 0 -6685.726 2745.343 51.00 11.53 .0 -1--1-.1895 .0121 .01 709 1.81 .81 .013 .00 .00 W S P G W - CIVILDESIGN Version 14.08 Program Package Serial Number: 7044 ₽ FILE: MAIN2 FAC17.WSW PAGE WATER SURFACE PROFILE LISTING Date: 3- 3-2016 Time:10: 3:42 THE SEVENTY GCW INC. PROJECT# 840.050

FILENAME: MAIN1_FAC17.WSW ****** Super |Critical|Flow Top|Height/|Base Wt| Depth I Energy | Grd.El. Invert Water Vel Station Elev (CFS) (FPS) Head Elev Depth Width Dia.-FT or I.D. ZL |Prs/Pip -1-L/Elem Ch Slope SE Dpth Froude N 1.88 -6685.017 1.700 2745.539 51.00 11.00 2747.42 .00 2.23 3.50 3.500 .000 .00 0 .591 .0107 .1895 .01 1.70 1.68 .81 .013 .00 .00 PIPE Page 1

	MAIN2_FAC17.OUT		
-6684.426 2743.951 1.765 2745.716	51.00 10.49 1.71 2747.42	.00 2.23 3.50	3.500 .000 .00 0 .0
- - .484 .1895	.0094 .00	1.77 1.57 .81	.013 .00 .00 PIPE
-6683.942 2744.042 1.833 2745.875	51.00 10.00 1.55 2747.43	.00 2.23 3.50	3.500 .000 .00 0 .0
.387 .1895	.0083 .00	1.83 1.46 .81	.013 .00 .00 PIPE
-6683.556 2744.116 1.904 2746.020	51.00 9.53 1.41 2747.43	.00 2.23 3.49	3.500 .000 .00 0 .0
.292 .1895	.0073 .00	1.90 1.36 .81	.013 .00 .00 PIPE
-6683.263 2744.171 1.979 2746.150 - -	51.00 9.09 1.28 2747.43		3.500 .000 .00 0 .0
.206 .1895	.0064 .00	1.98 1.26 .81	.013 .00 .00 PIPE
-6683.058 2744.210 2.058 2746.268 - -	51.00 8.67 1.17 2747.43		3.500 .000 .00 0 .0
.120 .1895	.0057 .00	2.06 1.17 .81	.013 .00 .00 PIPE
-6682.938 2744.233 2.142 2746.375	51.00 8.26 1.06 2747.43 - - .0050 .00	.00 2.23 3.41 	3.500 .000 .00 0 .0 - - .013 .00 .00 PIPE
.038 .1895 	51.00 7.87 .96 2747.44	.00 2.23 3.36	.013 .00 .00 PIPE
-0002.300 2744.240 2.232 2740.472	- -	-	

MAIN2_FAC19.WSW

COMPANY CONTRACTOR CONTRACTOR OF CONTRACTOR			
T1 THE SEVENTY			
T2 GCW INC. PROJECT# 840.050			
T3 FILENAME: MAIN2_FAC19.WSW SHT			
so -7049.3802726.520 18	2731.195		
R -7032.6802728.880 18 .013		60.000	.000 1
R -7003.6802736.320 18 .013		30.000	.000 0
SH -7003.6802736.320 18	.000		
CD 18 4 1.500			
CD 24 4 2.000			
CD 30 4 2.500			
CD 36 4 3.000			
CD 42 4 3.500			
CD 48 4 4.000			
CD 54 4 4.500			
CD 60 4 5.000			
CD 72 4 6.000			
Q 2.000 .0			

MAIN2_FAC19.OUT

የ FILE: MAI	N2 FΔC19 W	SM		WS	P G W - (_FAC19.OUT SIGN Versio	n 14 08						PAGE	1
TILL. PA	INE_I ACES.W	J#	Program	Package Se	erial Num	ber: 70	44 PROFILE LI				Date: 3-	3_2016			
		THE	SEVENTY			SURFACE	PROFILE LI	LSTING			Date. 3-	3-2010	I IIIIC. I	0. 2.36	
*****	*****	******		: MAIN2_FA	AC19.WSW	SHT	*****	*******	******	******	*****	*****	*****	******	*
Station	Invert Elev	Depth (FT)	Water Elev	Q (CFS)	Vel (FPS)	Vel Head	Energy Grd.El.	Super Elev	Critical Depth				ZL	No Wth Prs/Pi	
L/Elem ******	- Ch Slope ******	*****	*****	******	******	SF Ave	 HF ******	SE Dpth	Froude N	 Norm Dp *****	"N" ******	 X-Fall	ZR ****	Type C	h *
-7049.380	2726.520	4.675	2731.195	2.00	1.13	.02	2731.21	.00	.53	.00	1.500	.000	.00	0 .	0
16.700	.1413		 			.0004	.01	.00	.00	.23	.013	.00	.00	PIPE	
-7032.680	2728.880	2.325	2731.205	2.00	1.13	.02	2731.23	.00	.53	.00	1.500	.000	.00	0 .	0
3.225	.2566		lI	1	1	.0004	.00	.00	.00	.20	.013	.00	.00	PIPE	
-7029.455	2729.707	1.500	2731.207	2.00	1.13	.02	2731.23	1.50	.53	.00	1.500	.000	.00	0 .	0
.534	.2566					.0003	.00	1.50	.00	.20	.013	.00	.00	PIPE	
-7028.921	2729.844	1.360	2731.205	2.00	1.19	.02	2731.23	.00	.53	.87	1.500	.000	.00	0.	0
.304	.2566		 	,		.0003	.00	1.36	.15	.20	.013	.00	.00	PIPE	
-7028.617	2729.922	1.280	2731.202	2.00	1.24	.02	2731.23	.00	.53	' 1.06 	1.500	.000	.00	0 .	0
.252	.2566		ii	,		.0004	.00	1.28	.18	.20	.013	.00	.00	PIPE	
-7028.365	2729.987	1.213	2731.200	2.00	1.31	.03	2731.23	.00	.53	' 1.18 	1.500	.000	.00	0.	0
.121	.2566		1 1			.0004	.00	1.21	.20	.20	.013	.00	.00	PIPE	
-7028.245	2730.018	1.155	' 2731.173'	2.00	1.37	.03	2731.20	.00	' .53 	' 1.26 	1.500	.000	.00	0.	0
HYDRAULIC	JUMP '				,		ı			l	ľ	ı		Ī	
-7028.245	2730.018	.200	' 2730.218' 	2.00	14.27	3.16	2733.38	.12 	.53 	1.02	1.500	.000	.00	0 . I-	0
6.129	.2566 i				 I	.2316	1.42	.32	6.78	.20	.013	.00	.00	PIPE	
-7022.115	2731.591	.207	2731.798	2.00	13.53	2.84	2734.64	.11 -	'.53 	1.03 	1.500	.000	.00	0.	0
4.458 P FILE: MA	.2566 ' .2566 '	'SW		ws	PGW-	.2002	.89 SIGN Versio	.31 on 14.08	6.31	.20	.013	.00	.00	PIPE	2
			Program	Package Se	erial Num	ber: 70	44 PROFILE L				Date: 3-	3-2016			
		THE	SEVENTY GCW INC. F	PROJECT# 84	14										
*****	*****	*****	FILENAME	: MAIN2_F	AC19.WSW	SHT	*****	*****	*****	*****	*****	*****	*****	*****	*
Station	Invert Elev	Depth (FT)	Water Elev	Q (CFS)	Vel (FPS)	Vel Head	Energy Grd.El.	Super Elev	Critical Depth	Flow Top Width	Height/ DiaFT	Base Wt	ZL	No Wth Prs/Pi	
L/Elem	Ch Slope	*****	*****	*****	*****	SF Ave	HF	SE Dpth	Froude N	Norm Dp	"N"	X-Fall	ZR	Type C	h
-7017.657	2732.734	.214	2732.948	2.00	12.90	2.58	i 2735.53	.10	.53	1.05	1.500	.000	.00	0.	0
2.785	.2566					.1748	.49	 .31	 5.91	.20	.013	.00	.00	- PIPE	
-7014.872	l 2733.449	.221	l 2733.670	2.00	12.30	2.35	2736.02	.09	.53	1.06	1.500	.000	.00	0.	0
1.978	.2566	-				.1527	.30	 .31	5.54	.20	.013	.00	.00	- PIPE	
-7012.895	2733.956	.229	2734.185	2.00	11.72	2.13	2736.32	.08	.53	1.08	1.500	.000	.00	0.	0
1.518	.2566					.1333	20	31	5.20	.20	.013	.00	.00	PIPE	
-7011.377	2734.346	.236	2734.582	2.00	11.18	1.94		.08	53	1.09	1.500	.000	.00	0.	0
1.201	.2566		- -			.1163	.14	 .31		.20	.013	.00	.00	PIPE	
-7010.176	2734.654	.244	2734.898	2.00	10.66		2736.66	.07	.53	1.11	1.500	.000	.00	0.	0
.983	.2566			[]		.1016	.10	.31	4.56	.20	.013	.00	.00	- PIPE	
-7009.193	2734.906		2735.158	2.00	10.16	1.60	2736.76	l .06 I	.53	. 1.12	1.300	.000	.00	0.	0
.815	- .2566 	-	 '	-	- · - 	.0887	.07	.32	4.28	.20	.013	.00	.00	- PIPE	
-7008.378	2735.115	.261	2735.376	2.00	9.69 	1.46	2736.83	l .06 I		1.14	1.500	.000	.00	0.	0
-	j= -		1 -											1	
. 690	.2566				,	.0776	.05	.32	4.01	.20	.013	.00	.00	PIPE	

-7017.657 2732.734	.214 2732.948		2.58 2735.53	.10	.53	1.05	1.500	.000	.00	0	.0
2.785 .2566	- -	- -	.1748 .49	.31	5.91	.20	.013	.00	.00	PIPE	
-7014.872 2733.449	.221 2733.670		2.35 2736.02	.09	.53	1.06	1.500	.000	.00	0	.0
1.978 .2566	- -	- -	.1527 .30	.31	5.54	.20	.013	.00	.00	PIPE	
-7012.895 2733.956	.229 2734.185		2.13 2736.32	.08	.53	1.08	1.500	.000	.00	0	.0
1.518 .2566	- -	- -	.1333 .20	.31	5.20	.20	.013	.00	.00	PIPE	
-7011.377 2734.346	.236 2734.582	2.00 11.18	1.94 2736.52	.08	.53	1.09	1.500	.000	.00	0	.0
1.201 .2566	-11-		.1163 .14	.31	4.87	.20	.013	.00	.00	PIPE	
-7010.176 2734.654	.244 2734.898	2.00 10.66	1.76 2736.66	.07	.53	1.11	1.500	.000	.00	0	.0
.983 .2566	- -		.1016 .10	.31	4.56	.20	.013	.00	.00	PIPE	
-7009.193 2734.906	.252 2735.158	2.00 10.16	1.60 2736.76	.06	.53	1.12	1.500	.000	.00	0	.0
.815 .2566	-11-		.0887 .07	.32	4.28	.20	.013	.00	.00	PIPE	
-7008.378 2735.115	.261 2735.376	2.00 9.69	1.46 2736.83	.06	.53	1.14	1.500	.000	.00	0	.0
.690 .2566	-11-		.0776 .05	.32	4.01	.20	.013	.00	.00	PIPE	
-7007.688 2735.292	.270 2735.562	2.00 9.24	1.33 2736.89	.06	.53	1.15	1.500	.000	.00	0	.0
.590 .2566	-11-		.0678 .04	.33	3.76	.20	.013	.00	.00	PIPE	
-7007.098 2735.444	.279 2735.723	2.00 8.81	1.20 2736.93	.05	.53	1.17	1.500	.000	.00	0	.0
.509 .2566	- -		.0592 .03	.33	3.52	.20	.013	.00		PIPE	_
₹ FILE: MAIN2_FAC19.WSW		WSPGW-CIV	ILDESIGN Version 1	L4.08					P	AGE	3
	Program Pack	kage Serial Number	r: 7044 REACE PROFILE LIST	TNG		r	ate: 3- 3-	-2016 T	ima • 10	1. 2.5	8

WATER SURFACE PROFILE LISTING Date: 3- 3-2016 Time:10: 2:58 THE SEVENTY
GCW INC. PROJECT# 840.050

			FILENAME	: MAIN2_FA	AC19.WSW	SHT									
******	*****	*****	******	********	******	*****	******	*****	*****	*****	*****	******	*****	****	***
	Invert	Depth	Water	0 -	l Vel	vel	Energy	Super	Critical	IFlow Top	Height/	Base Wt	1	NO W	th
Station	Elev	(FT)	Elev	(CFS)	(FPS)	Head	Grd.Ĕĺ.	Elev	Depth	Width	DiaFT	or I.D.	ZL	Prs/	Pip
-														1	
L/Elem	Ch Slope					SF Ave	HF		Froude N		"N"	X-Fall	ZR	Туре	
******	******	*****	*****	*****	*****	*****	******	******	******	******	******	*****	****	****	***
200 0 0 00000			102000000000000000000000000000000000000		l			1						1	- 4
-7006.589	2735.574	.288	2735.862	2.00	8.40	1.10	2736.96	.05	. 53	1.18	1.500	.000	.00	. 0	.0
-													-	1-1	
.437	.2566					.0517	.02	.33	3.30	.20	.013	.00	.00	PIPE	
							200 1								

			MAIN2_	FAC19.OUT	12				2		
-7006.152 2735.686	.298 2735.984	2.00	8.01 1.00	2736.98 I-	.04 -1-	.53	1.20	1.500	.000	00 0	.0
.381 .2566	-11-	-1-	.0452	.02	. 34	3.09	.20	.013	.00 .	00 PIPE	
-7005.771 2735.784	.308 2736.092	2.00	7.63 .91	2737.00	.04	.53	1.21	1.500	.000	00 0	.0
.329 .2566	- -	-1-	.0395	.01	.35	2.89	.20	.013	.00	00 PIPE	
-7005.442 2735.868	.319 2736.187	2.00	7.28 .82	2737.01	.04	.53	1.23	1.500	.000 .	00 0	.0
.292 .2566	-11-	-1-	.0345	.01	. 36	2.71	.20	.013	.00 .	00 PIPE	
-7005.150 2735.943	.329 2736.272	2.00	6.94 .75	2737.02	.03	.53	1.24	1.500	.000 .	00 0	.0
.248 .2566	1 1	1	.0302	.01	.36	2.54	.20	.013	.00	00 PIPE	
-7004.903 2736.007	.341 2736.348	2.00	6.62 .68	2737.03	.03	.53	1.26	1.500	.000	00 0	.0
.221 .2566	-1(-	-1-	.0264	.01	. 37	2.38	.20	.013	.00	00 PIPE	
-7004.682 2736.063	.352 2736.415	2.00	6.31 .62	2737.03	.03	.53	1.27	1.500	.000	00 0	.0
.189 .2566	1 1	1	.0230	.00	.38	2.23	.20	.013	.00	00 PIPE	
-7004.493 2736.112	.364 2736.476	2.00	6.02 .56	2737.04	.03	.53	1.29	1.500	.000	00 0	.0
.161 .2566	1 1	1	.0202	.00	.39	2.09	.20	.013	.00 .	00 PIPE	
-7004.332 2736.153	.377 2736.530	2.00	5.74 .51	2737.04	.02	.53	1.30	1.500	.000	00 0	.0
.140 .2566 f FILE: MAIN2_FAC19.WSW	-11-	W S P G	.0176	.00 IGN Version	.40	1.95	.20	.013		00 PIPE PAGE	4
T TILL. MAINZ_FACIS.WSW	Drognam Back	rage Conic	704		11.00					, AGE	7

Program Package Serial Number: 7044
WATER SURFACE PROFILE LISTING THE SEVENTY

Date: 3- 3-2016 Time:10: 2:58

GCW INC. PROJECT# 840.050 FILENAME: MAIN2_FAC19.WSW ********* Energy | Super | Critical | Flow Top | Height / | Base Wt | Grd.El. | Elev | Depth | Width | Dia.-FT | Or I.D. | Q (CFS) Depth (FT) Ve1 Invert Station Head ZL Ch Slope SF Ave X-Fall L/Elem SE Dpth Froude N Norm Dp ZR Type Ch -7004.191 2736.189 2736.579 .02 1.500 .000 .00 0 1.83 .00 .0154 .013 .00 .121 .2566 .00 .41 .20 PIPE .02 1.500 .000 .00 0 -7004.070 2736.220 .403 2736.623 2.00 5.21 .42 2737.05 .53 1.33 .0135 1.71 .20 .013 .100 .2566 .00 .42 .00 .00 PIPE 0 -7003.970 2736,246 2736.663 2.00 4.97 .38 2737.05 .02 .53 1.34 1.500 .000 .00 .081 .2566 .0118 .00 . 44 1.60 .20 .013 .00 .00 PIPE 2736.266 .35 2737.05 .02 1.500 .000 .00 0 -7003.889 2736.698 2.00 4.74 .53 1.36 .0 .0103 .00 .45 1.50 .20 .013 .00 .00 PIPE 4.52 .02 1.500 .000 0 -7003.821 2736.284 2736.731 2.00 .32 2737.05 .53 1.37 .00 1.40 .052 .2566 .0091 .00 .46 .20 .013 .00 .00 PIPE 4.31 2736.297 2.00 .29 2737.05 .01 .53 1.39 1.500 .000 .00 0 -7003.770 463 2736.760 0 .0079 .013 .00 .041 .2566 .00 .48 PIPE 4.11 2737.05 .01 1.500 .000 0 -7003:729 2736.308 .479 2736.787 2.00 .26 .53 1.40 .00 .0 .0069 .013 .00 .027 .2566 .00 .49 1.23 .20 .00 PIPE -7003.701 2736.315 2736.811 2.00 3.92 .24 2737.05 .01 . 53 1.41 1.500 .000 .00 0 .0 .2566 .0061 .00 .51 1.15 .20 .013 .00 .00 .019 PIPE ..683 2736.320 ..002 3.74 -7003.683 .513 2736.833 2.00 . 22 2737.05 .01 .53 1.42 1.500 .000 .00 0 -|-.2566 .0053 .00 1.07 .20 .013 .00 .00 PIPE W S P G W - CIVILDESIGN Version 14.08 Program Package Serial Number: 7044 WATER SURFACE PROFILE LISTING ♀ FILE: MAIN2_FAC19.WSW PAGE

THE SEVENTY

Date: 3- 3-2016 Time:10: 2:58

SEVENTY
GCW INC. PROJECT# 840.050
FILENAME: MAIN2_FAC19.WSW Depth (FT) Energy Grd.El. Super Elev Invert Q (CFS) Vel |Critical|Flow Top|Height/|Base Wtl No Wth Width L/Elem Ch Slope SF SE Dpth Froude N Norm Dp Ave HF Type Ch 2737.05 00. ان 1.44 1.500 .000 .01 -7003.680 2736.320 .533 2736.853 2.00 3.55 .20 .53 -1-

MAIN2_FAC21.WSW

T1 THE SEVENTY			
T2 GCW INC. PROJECT# 840.050			
T3 FILENAME: MAIN2_FAC21.WSW SHT			
so -7308.6402713.300 18	2718.250		
R -7289.4202713.684 18 .013		0.000	.000 0
SH -7289.4202713.684 18	.000		
CD 18 4 1.500			
CD 24 4 2.000			
CD 30 4 2.500			
CD 36 4 3.000			
CD 42 4 3.500			
CD 48 4 4.000			
CD 54 4 4.500			
CD 60 4 5.000			
CD 72 4 6.000			
Q 2.000 .0			

♀ FILE: MAIN2_FAC21.WSW

MAIN2_FAC21.OUT

W S P G W - CTVILDESIGN Version 14.08
Program Package Serial Number: 7044

WATER SURFACE PROFILE LISTING

Date: 3- 3-2016 Time:10: 0:25

PAGE

THE SEVENTY
GCW INC. PROJECT# 840.050
FILENAME: MAIN2 FAC21.WSW SHT

			FILENAME	E: MAINZ_FA	ACZI.WSW	SHT									
******	******	******	******	*******	******	*****	******	*****	****	****	****	*****	****	****	**
	Invert	Depth	Water	0	Vel	vel	Energy	Super	[Critica]	IFlow Top	Height/	Base Wt		No Wt	h
Station	Elev	(FT)	Elev	(CFS)	(FPS)	Head	Grd.Ĕĺ.	Elev	Depth		DiaFT		ZL	Prs/P	ήp
-										-				1	
L/Elem	Ch Slope	1				SF Ave	HF	SE Dpth	Froude N	Norm Dp	"N"	X-Fall	ZR	Туре	
******	******	*****	******	*****	******	*****	*****	*****	*****	*****	*****	*****	****	*****	**
		i	i i	i i				i	i	ĺ	İ	İ	i i	ĺ	
-7308.640	2713.300	4.950	2718.250	2.00	1.13	. 02	2718.27	.00	.53	.00	1.500	.000	.00	0	. 0
7300.010	1	1	11		1		l	1	I	1	1	l	-	I - "	
19.220	.0200	I.	,			.0004	.01	4.95	.00	.37	.013	.00	.00	PIPE	
13.220	1 .0200	T :	1 1	1		.0001		1	1	1	1			1	
-7289.420	2713.684	4.573	2718.257	2.00	1.13	.02	2718.28	.00	.53	.00	1.500	.000	.00	0	Λ
-7209.420	2713.004	4.3/3	2/10.23/	2.00	1.13	.02	2/10.20	.00		.00	1.300	.000	.00		. 0
_		ļ											-	-	
¥															

HEC-RAS ANALYSIS

EXISTING CONDITIONS MAIN 1

HEC-RAS Version 4.1.0 Jan 2010 U.S. Army Corps of Engineers Hydrologic Engineering Center 609 Second Street Davis, California

Х	Х	XXXXXX	XX	XX		XX	XX	X	X	XXXX
X	X	X	X	X		X	X	X	X	X
X	X	X	X			X	X	X	X	X
XXXX	XXXX	XXXX	X		XXX	XX	XX	XXX	XXX	XXXX
X	X	X	X			X	X	X	X	X
X	Χ	X	X	X		X	X	X	X	X
X	X	XXXXXX	XX	XX		X	X	X	X	XXXXX

PROJECT DATA

Project Title: Main 1 - Existing Condition

Project File : EXIST3.prj

Run Date and Time: 2/29/2016 11:05:34 AM

Project in English units

PLAN DATA

Plan Title: Main1

Plan File: f:\Projects\800\840-050\Division\Fctl\Calcs\HEC-RAS\01-Main1\EXIST3.p02

Geometry Title: Main1

Geometry File : f:\Projects\800\840-050\Division\Fctl\Calcs\HEC-RAS\01-

Main1\EXIST3.G01

Flow Title : Main1

Flow File :

: f:\Projects\800\840-050\Division\Fctl\Calcs\HEC-RAS\01-

Main1\EXIST3.F01

Plan Summary Information:

Number of: Cross Sections = 26 Multiple Openings = 0

Culverts = 0 Inline Structures = 0 Bridges = 0 Lateral Structures = 0

Computational Information

Water surface calculation tolerance = 0.01Critical depth calculation tolerance = 0.01Maximum number of iterations = 20Maximum difference tolerance = 0.3Flow tolerance factor = 0.001

Computation Options

Critical depth computed at all cross sections

Conveyance Calculation Method: At breaks in n values only

Friction Slope Method: Computational Flow Regime: Average Conveyance Subcritical Flow

FLOW DATA

Flow Title: Main1

Flow File: f:\Projects\800\840-050\Division\Fctl\Calcs\HEC-RAS\01-Main1\EXIST3.F01

Flow Data (cfs)

River Reach RS PF 1 Unnamed Wash Main1 2700 2128

Unnamed Wash	Main1		1700		222	7			
Unnamed Wash	Main1		1500		247				
Unnamed Wash	Main1		800		249				
Unnamed Wash	Main1		500		420	9			
Boundary Conditi	ons								
River	Reach		Profile			U	pstream		
Downstream									
Unnamed Wash	Main1		PF 1				Critica	1	Known
2684.83									
GEOMETRY DATA									
	M-1-1								
Geometry Title: Geometry File:		ts\800\8	40-050\D	ivision\	Fctl\Calc	s\HEC-R	AS\01-Ma	in1\EXIST	3.G01
CROSS SECTION									
DITTIND There are 1 M	1-								
RIVER: Unnamed W REACH: Main1	asn	RS: 270	0						
INPUT									
Description:									
Station Elevatio		num=	32	2000			water to	-	
Sta Elev		Elev	Sta	Elev		Elev	Sta	Elev	
0 2769 24.32 2764		2768 2763	8.89 34.62	2767 2762	14.12 39.85	2766 2761	19.18 45	2765 2760	
48.3 2759		2758	54.15	2757		2756	74.22	2756	
77.45 2757		2758		2758	94.1	2757	95.07	2757	
97.37 2758	99.58	2759	100.37	2760	101.18	2761	101.97	2762	
103.09 2763		2764	108.63	2765	112.52	2766	116.09	2767	
119.56 2768	127.49	2769							
Manning's n Valu		num=	3						
Sta n Val		n Val	Sta	n Val					
0 .035	0	.035	127.49	.035					
Bank Sta: Left	Right	Lengths	: Left C 95.75	hannel 98.69	Right	Coeff	Contr.	Expan.	
CROSS SECTION			,,,,						
RIVER: Unnamed W REACH: Main1	ash	RS: 260	0						
INPUT									
Description:									
Station Elevatio	n Data	num=	34						
Sta Elev		Elev	Sta	Elev	Sta	Elev	Sta	Elev	
0 2765		2764	6.31	2763	9.41	2762	12.03	2761	
12.88 2760 17.69 2755		2759 2754	14.76 22.83	2758 2752	15.74 32.12	2757 2752	16.76 37.82	2756 2754	
43.67 2755		2754	66.54	2757	66.62	2758	66.71	2759	
68.82 2761		2761	70.78	2759	71.78	2758	72.75	2757	
86.93 2757		2758	91.7	2759	92.96	2760	94.15	2761	
99.48 2762	104.49	2763	110.14	2764	115.64	2765			
Manning's n Valu	es	num=	3						
Sta n Val	Sta	n Val	Sta	n Val					
0 .035	0	.035	115.64	.035					
Bank Sta· Left	Right	Lengths	. Left C	hannel	Right	Coeff	Contr.	Expan	

Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan. 0 115.64 101.86 103.65 108.71 .1 .3

Known WS =

0 2761 38 2760 .75 2759 1.17 2758 1.89 2756 2.3 2755 2.68 2754 3.06 2753 3.44 2752 9.58 2744 17.77 2748 34.89 2752 60.1 2753 67.24 2754 71.71 2755 76.74 2756 84.67 2758 93.68 2759 99.64 2760 104.45 2761 2752 9.58 2744 2754 71.71 2755 2761 2756 2751 2752 9.58 2744 71.71 2755 2761 2752 9.58 2744 71.71 2755 2761 2752 9.58 2744 71.71 2755 2761 2752 9.58 2744 71.71 2755 2761 2752 9.58 2744 71.71 2755 2761 2752 9.58 2744 71.71 2755 2751 2752 9.58 2744 71.71 2755 2752 9.58 2744 71.71 2755 2752 9.58 2744 71.71 2755 2752 9.58 2744 71.71 2755 2752 9.58 2744 9.66 2744 2751 2752 9.58 2752 9.58 2744 9.66 2744 2752 9.58 2752 9.58 2754 9.9.67 2755 13.08 27				
Description: Station Elevation Data Num= 20		RS: 2500		
Sta Elev Sta Sta	Description:	20		
2.3 2755 2.68 2754 3.06 2753 3.44 2752 9.58 2744 17.77 2748 34.89 2752 60.1 2753 67.24 2754 71.71 2755 76.74 2756 84.67 2758 93.68 2759 99.64 2760 104.45 2761 76.74 2756 84.67 2758 93.68 2759 99.64 2760 104.45 2761 76.74 2756 84.67 2758 93.68 2759 99.64 2760 104.45 2761 76.74 2756 84.67 2758 93.68 2759 99.64 2760 104.45 2761 76.74 2756 84.67 2758 93.68 2759 99.64 2760 104.45 2761 76.74 2761 76			Elev Sta	Elev
Tr. Tr.				2756
Manning's n Values				2748
Sta				2761
Sta	Manning's n Values	num= 3		
Bank Sta: Left Right 0 104.45 Lengths: Left Chammel Right 0 104.45 REXACTION RIVER: Unnamed Wash REACH: Main1 RS: 2400 RIVER: Unnamed Wash REACH: Main1 RS: 2400 RIVER: Unnamed Wash REACH: Main1 RS: 2400 Sta Elev Elev Elev Elev Sta Elev Elev Elev Elev Elev Elev Elev Elev	Sta n Val Sta	n Val Sta n Val		
CROSS SECTION RIVER: Unnamed Wash REACH: Main1	0 .035 0	.035 104.45 .035		
RIVER: Unnamed Wash REACH: Main1	, , , , , , , , , , , , , , , , , , , ,			Expan.
REACH: Main RS: 2400 RS: 2400 RS: 2400 RS: 2400 RS: 2400 RS: 2400 RS: 2400 RS: 2400 RS: 2400 RS: 2400 RS: 2400 RS: 240	CROSS SECTION			
INPUT Description: Station Elevation Data num= 23		PG - 2400		
Description: Station Elevation Data num= 23	REACH: MAIIII	KS: 2400		
Station Elevation Data Num= 23				
0 2758 15.42 2758 18.34 2757 21.01 2756 23.33 2751 24.99 2754 26.51 2753 29.64 2751 31.2 2750 33.06 2748 37.36 2747 68.67 2749 90.83 2749 95.4 2751 98.61 2752 104.46 2754 109.02 2755 118.84 2756 121.79 2757 123.77 2758 126.1 2759 128.13 2759 Manning's n Values num= 3 Sta n Val Sta n Val O 128.13 109.52 114.22 121.17 1.1 3.3 CROSS SECTION RIVER: Unnamed Wash REACH: Main1 RS: 2300 INPUT Description: Station Elevation Data Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev Sta 12.79 2757 2758 22.13 2759 2756 20.71 2755 24.77 2754 28.47 2755 23.13 2752 23.35 2756 42.62 2745 49.66 2744 64.78 2746 79.83 2755 104.09 2756 108.38 2755 92.1 2755 104.09 2756 108.38 2757 112.21 2758 115.85 2755 119.41 2760 122.82 2761 126.24 2762 Manning's n Values num= 3 Sta n Val Sta n Val Sta n Val Sta n Val Sta n Val Sta n Val Sta n Val Sta n Val Na		num= 23		
24.99	10.00			Elev
35.06				2749
Manning's n Values	35.06 2748 37.36			2751
Manning's n Values num= 3 Sta n Val Sta n Val Sta n Val 0 .035 0 .035 128.13 .035 Bank Sta: Left Right 0 128.13 109.52 114.22 121.17 Coeff Contr. Expanded Wash REACH: Main1 RS: 2300 INPUT Description: Station Elevation Data num= 33 Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev 0 2757 13.08 2756 20.71 2755 24.77 2754 28.47 2753 32.13 2752 33.53 2751 34.62 2750 35.7 2749 36.76 2748 37.76 2747 39.95 2746 42.62 2745 49.66 2744 64.78 2744 79.83 2750 83.9 2751 88.3 2752 92.1 2753 95.71 2754 99.67 2755 104.09 2756 108.38 2757 112.21 2758 115.85 2759 119.41 2760 122.82 2761 126.24 2762 Manning's n Values num= 3 Sta n Val Sta n Val Sta n Val O .035 0 .035 126.24 .035 Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expanded to the composition of the			2756 121.79	2757
Sta n Val Sta n Val Sta n Val O .035 128.13 .035 Bank Sta: Left Right O 128.13 109.52 114.22 121.17 .1 .3 CROSS SECTION RIVER: Unnamed Wash REACH: Main1 RS: 2300 INPUT Description: Station Elevation Data num= 33				
Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expand 0 128.13 109.52 114.22 121.17 .1 .3 CROSS SECTION RIVER: Unnamed Wash REACH: Main1 RS: 2300 INPUT Description: Station Elevation Data num= 33 Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev Sta Sta Sta Sta Sta Sta Sta Sta Sta Sta	10000 10000 10000 10000 10000 10000 10000			
CROSS SECTION RIVER: Unnamed Wash REACH: Main1 RS: 2300 INPUT Description: Station Elevation Data num= 33 Elev Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev Sta 2751 32.13 2752 33.53 2751 34.62 2750 35.7 2749 36.76 2748 37.76 2747 39.95 2746 42.62 2745 49.66 2744 64.78 2746 79.83 2750 83.9 2751 88.3 2752 92.1 2753 95.71 2754 2754 2755 2755 2755 2755 2755 2755				
CROSS SECTION RIVER: Unnamed Wash REACH: Main1 RS: 2300 INPUT Description: Station Elevation Data num= 33 Elev Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev Sta 2751 32.13 2752 33.53 2751 34.62 2750 35.7 2749 36.76 2748 37.76 2747 39.95 2746 42.62 2745 49.66 2744 64.78 2746 79.83 2750 83.9 2751 88.3 2752 92.1 2753 95.71 2754 2754 2755 2755 2755 2755 2755 2755	Bank Sta: Left Right	Lengths: Left Channel Right	Coeff Contr.	Expan.
RIVER: Unnamed Wash REACH: Main1 RS: 2300 INPUT Description: Station Elevation Data num= 33 Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev Sta Sta Sta Sta Sta Sta Sta Sta Sta Sta		_		-
REACH: Main1 RS: 2300 INPUT Description: Station Elevation Data num= 33 Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev Sta S2.13 2752 33.53 2751 34.62 2750 35.7 2749 36.76 2748 37.76 2747 39.95 2746 42.62 2745 49.66 2744 64.78 2746 70.38 2745 73.02 2746 74.87 2747 76.67 2748 78.26 2745 79.83 2750 83.9 2751 88.3 2752 92.1 2753 95.71 2754 99.67 2755 104.09 2756 108.38 2757 112.21 2758 115.85 2759 119.41 2760 122.82 2761 126.24 2762 Manning's n Values num= 3 Sta n Val Sta n Val Sta n Val One Sta n Val One Sta n Val One Sta n Val Sta	CROSS SECTION			
REACH: Main1 RS: 2300 INPUT Description: Station Elevation Data num= 33 Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev Sta S2.13 2752 33.53 2751 34.62 2750 35.7 2749 36.76 2748 37.76 2747 39.95 2746 42.62 2745 49.66 2744 64.78 2746 70.38 2745 73.02 2746 74.87 2747 76.67 2748 78.26 2745 79.83 2750 83.9 2751 88.3 2752 92.1 2753 95.71 2754 99.67 2755 104.09 2756 108.38 2757 112.21 2758 115.85 2759 119.41 2760 122.82 2761 126.24 2762 Manning's n Values num= 3 Sta n Val Sta n Val Sta n Val One Sta n Val One Sta n Val One Sta n Val Sta				
INPUT Description: Station Elevation Data	RIVER: Unnamed Wash			
Description: Station Elevation Data	REACH: Main1	RS: 2300		
Station Elevation Data num= 33 Sta Elev	INPUT			
Sta Elev Sta 2753 23.74 2748 2748 2744		22		
0 2757 13.08 2756 20.71 2755 24.77 2754 28.47 2753 32.13 2752 33.53 2751 34.62 2750 35.7 2749 36.76 2748 37.76 2747 39.95 2746 42.62 2745 49.66 2744 64.78 2744 70.38 2745 73.02 2746 74.87 2747 76.67 2748 78.26 2745 79.83 2750 83.9 2751 88.3 2752 92.1 2753 95.71 2754 99.67 2755 104.09 2756 108.38 2757 112.21 2758 115.85 2753 119.41 2760 122.82 2761 126.24 2762 Manning's n Values num= 3 Sta n Val Sta n Val 0.035 0 .035 126.24 .035			Elev Sta	Elev
37.76		2756 20.71 2755 24.77		2753
70.38 2745 73.02 2746 74.87 2747 76.67 2748 78.26 2745 79.83 2750 83.9 2751 88.3 2752 92.1 2753 95.71 2754 99.67 2755 104.09 2756 108.38 2757 112.21 2758 115.85 2755 119.41 2760 122.82 2761 126.24 2762 2762 2768 2769 2769 2769 2769 2769 2769 2769 2769				2748
79.83 2750 83.9 2751 88.3 2752 92.1 2753 95.71 2754 99.67 2755 104.09 2756 108.38 2757 112.21 2758 115.85 2753 119.41 2760 122.82 2761 126.24 2762 Manning's n Values num= 3 Sta n Val Sta n Val Sta n Val 0 .035 0 .035 126.24 .035 Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expansion				2744
119.41 2760 122.82 2761 126.24 2762 Manning's n Values num= 3 Sta n Val Sta n Val Sta n Val 0 .035 0 .035 126.24 .035 Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan		2751 88.3 2752 92.1	2753 95.71	2754
Manning's n Values num= 3 Sta n Val Sta n Val Sta n Val 0 .035 0 .035 126.24 .035 Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan			2758 115.85	2759
Sta n Val Sta n Val Sta n Val 0 .035 0 .035 126.24 .035 Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan	119.41 2760 122.82	2/61 126.24 2762		
0 .035 0 .035 126.24 .035 Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan	THE RESERVE OF THE PARTY OF THE			
Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan				
			Gaaff Gaata	
		Lengths: Left Channel Right 191.53 193.81 198.19	Coeff Contr. 1	Expan.

RIVER: Unnamed Wash REACH: Mainl	RS: 2200	
INPUT Description: Station Elevation Data Sta Elev Sta 0 2752 8.53 41.77 2746 47.66 57.55 2741 61.05 89.14 2743 90.4 96.89 2748 98.01 103.89 2753 105.52 118.47 2758 127.18	2751 25.12 2749 33.08 2748 37. 2745 50.99 2744 52.82 2743 54. 2740 78.87 2740 83.65 2741 87.	58 2742 38 2742 95 2747 91 2752
Manning's n Values Sta n Val Sta 0 .035 0	num= 3 n Val Sta n Val .035 127.18 .035	
Bank Sta: Left Right 0 127.18	Lengths: Left Channel Right Coeff Cont. 113.96 200.13 254.43 .1	-
CROSS SECTION		
RIVER: Unnamed Wash REACH: Main1	RS: 2100	
INPUT Description: Station Elevation Data Sta Elev Sta 0 2748 9.24 40.48 2741 42.68 78.8 2738 79.56 85.58 2743 93.92	num= 20 Elev Sta Elev Sta Elev S 2747 16.89 2746 26.59 2744 37. 2740 44.83 2739 47.03 2738 55. 2739 80.33 2740 81.25 2741 83.3 2746 96.58 2747 132.68 2749 132.	78 2736 37 2742
Manning's n Values Sta n Val Sta 0 .035 0	num= 3 n Val Sta n Val .035 132.68 .035	
Bank Sta: Left Right 0 132.68	Lengths: Left Channel Right Coeff Cont. 231.94 197.1 162.04 .1	·
CROSS SECTION		
RIVER: Unnamed Wash REACH: Main1	RS: 2000	
INPUT Description: Station Elevation Data Sta Elev Sta 0 2755 3.69 25.24 2749 30.66 46.08 2744 47.48 50.49 2739 51.12 53.42 2734 54.05 58.7 2729 72.73 84.74 2733 87.34 137.36 2739 Manning's n Values Sta n Val Sta 0 .035 116.39	num= 36 Elev Sta Elev Sta Elev S 2754 10.93 2752 15.12 2751 19. 2748 36.25 2747 40.5 2746 43 2743 48.3 2742 49.03 2741 49. 2738 51.7 2737 52.34 2736 52. 2733 54.84 2732 56.08 2731 57. 2729 74.05 2730 77.94 2731 82. 2734 89.95 2735 107.65 2737 116.5 num= 2 n Val .03	.7 2745 79 2740 87 2735 36 2730 11 2732
Bank Sta: Left Right	Lengths: Left Channel Right Coeff Cont	r. Expan.

RIVER: Unnamed Wash

REACH: Main1 RS: 1900

INPUT

Description:

Station	Elevation	Data	num=	54					
Sta	Elev	Sta	Elev	Sta	Elev	Sta	Elev	Sta	Elev
C	2760	7.86	2759	8.62	2758	9.33	2757	10.1	2756
12.21	. 2754	14.17	2753	16.04	2752	17.72	2751	19.29	2750
22.45	2748	24.24	2747	26.07	2746	27.89	2745	29.73	2744
31.59	2743	33.35	2742	35.09	2741	37.27	2740	39.81	2739
42.41	. 2738	43.87	2737	44.98	2736	46.08	2735	46.55	2734
47.14	2733	47.96	2732	49.45	2730	50.64	2729	51.77	2728
52.93	2727	54.04	2726	55.19	2725	56.32	2724	69.55	2724
69.74	2725	69.88	2726	70.03	2727	70.55	2728	72.22	2729
75.51	2729	80.71	2729	83.34	2730	86.02	2731	88.45	2732
90.22	2733	91.95	2734	94.33	2735	96.69	2736	99.84	2737
102.86	2738	105.74	2739	124.05	2740	124.05	2741		

Manning's n Values num= 2

Sta n Val Sta n Val

0 .035 105.74 .03

Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan. 0 124.05 122.47 101.94 85.19 .1 .3

CROSS SECTION

RIVER: Unnamed Wash

REACH: Main1 RS: 1800

Description:

Description	n:								
Station Ele	evation	Data	num=	53					
Sta	Elev	Sta	Elev	Sta	Elev	Sta	Elev	Sta	Elev
0	2740	3.91	2746	13.58	2747	27.29	2747	40.79	2744
44.66	2743	46.27	2742	47.87	2741	49.53	2740	51.08	2739
54.43	2737	56.3	2736	58.22	2735	60.13	2734	63.04	2732
64.1	2731	64.52	2730	64.99	2729	65.44	2728	66.35	2726
66.79	2725	67.28	2724	67.73	2723	68.2	2722	69.12	2720
75.66	2719	79.29	2721	79.87	2722	80.21	2723	80.48	2724
80.76	2725	81.02	2726	81.44	2727	82.21	2728	83.08	2729
83.9	2730	84.67	2731	86.85	2732	92.81	2732	94.63	2732
100.04	2732	102.44	2731	104.77	2730	115.2	2730	116.94	2731
118.67	2732	120.41	2733	122.2	2734	125.27	2735	129.23	2736
133.96	2737	139.92	2738	148.25	2737				

Manning's n Values num= 3
Sta n Val Sta n Val Sta n Val
0 .035 0 .035 148.25 .035

Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan.

0 148.25 140.2 137.49 140.54 .1 .3

CROSS SECTION

RIVER: Unnamed Wash

RS: 1700 REACH: Main1

INPUT

Description:

22.36 2732 26.44 40.4 2725 40.83 43.53 2718 43.95 53.05 2719 53.18 54.58 2725 54.7 62.1 2730 62.82 75.99 2731 92.39 Manning's n Values Sta n Val 0 .035 0	2731 32.09 2730 2724 41.29 2723 2717 44.26 2716 2720 53.54 2722 2726 55.93 2727 2731 64.63 2731 2732 num= 3 n Val Sta n Val .035 92.39 .035	36.2 2729 39.93 2726 42.62 2720 43.08 2719 52.91 2717 52.98 2718 54.25 2723 54.56 2724 57.21 2728 61.3 2729 65.76 2730 72.27 2730
Bank Sta: Left Right 0 92.39	Lengths: Left Channel 145.9 141.68	
CROSS SECTION		
RIVER: Unnamed Wash REACH: Main1	RS: 1600	
INPUT Description: Station Elevation Data Sta Elev Sta 0 2730 .84 10.96 2726 13.73 20.05 2721 20.5 22.7 2715 23.18 32.35 2711 32.43 32.55 2716 32.61 32.87 2721 33 47.05 2724 57.68 79.21 2730 Manning's n Values Sta n Val 0 .035 0 Bank Sta: Left Right 0 79.21	num= 41 Elev Sta Elev 2730 3.34 2729 2725 16.56 2724 2720 20.95 2719 2714 23.61 2713 2712 32.46 2713 2717 32.63 2718 2722 33.08 2723 2725 64.05 2727 num= 3 n Val .035 79.21 .035 Lengths: Left Channel 132.22 129.11	5.76 2728 8.34 2727 18.7 2723 19.54 2722 21.4 2718 21.81 2717 24.1 2712 25.18 2711 32.51 2714 32.51 2715
CROSS SECTION		
RIVER: Unnamed Wash REACH: Main1	RS: 1500	
INPUT Description: Station Elevation Data Sta Elev Sta 0 2739 5.25 12.54 2735 13.99 22.3 2728 25.11 28.38 2721 28.86 30.55 2716 30.96 32.55 2711 32.96 41.04 2709 41.4 42.61 2714 42.89 48.75 2719 51.54 60.88 2724 63.2 70.84 2729 73.94 Manning's n Values Sta n Val 0 .035 0	num= 54 Elev Sta Elev 2739 10.38 2738 2733 15.85 2732 2726 26.47 2725 2720 29.24 2719 2715 31.37 2714 2710 36.88 2707 2710 41.76 2711 2715 43.12 2716 2720 53.99 2721 2725 65.05 2726 2730 79.58 2732 num= 3 n Val Sta n Val .035 81.97 .035	Sta Elev Sta Elev 11.16 2737 11.88 2736 19.53 2730 20.91 2729 27.51 2723 27.95 2722 29.73 2718 30.09 2717 31.75 2713 32.14 2712 40.43 2707 40.71 2708 42.06 2712 42.35 2713 44.34 2717 46.18 2718 56.32 2722 58.52 2723 66.91 2727 68.83 2728 81.97 2733
Bank Sta: Left Right 0 81.97	Lengths: Left Channel 270.26 260.99	Right Coeff Contr. Expan. 251.15 .1 .3

RIVER: Unnamed REACH: Main1	Wash	RS: 1400						
0 27 30.02 27 34.42 27 45.32 27	ev Sta 20 6.86 10 30.88 04 41.24 05 45.5	num= Elev 2719 2709 2702.26 2708	31 Sta 11.59 31.6 42.26 45.52	Elev 2718 2708 2702 2709	Sta 21.44 33 45.17 45.55	Elev 2715 2706 2702 2710	Sta 25.17 33.73 45.29 46.41	Elev 2713 2705 2704 2711
75.09 27	12 50.57 14 78.35 09	2713 2713 num=	52.69 81.16	2714 2712	55.15 84.24	2715 2711	70.98 87.41	2715 2710
Sta n V		n Val .035	Sta 90.89	n Val .035				
Bank Sta: Left 0 Blocked Obstru Sta L Sta 70.98 90. CROSS SECTION	90.89 ctions R Elev	Lengths: : num=			Right 199.87	Coeff	Contr.	Expan.
RIVER: Unnamed REACH: Main1	Wash	RS: 1300						
0 27 27.42 27 45.01 26 72.3 27 81.18 27	ion Data ev Sta 12 4.99 03 29.49 99 64.83 03 73.52 09 84.68 16 92.61	num= Elev 2710 2702 2699 2704 2711 2717	29 Sta 14.86 31.48 67.91 75.03 89.2 93.31	Elev 2706 2701 2700 2705 2713 2718	Sta 17.55 36.81 70.18 76.39 90.51 94.06	Elev 2705 2700 2701 2706 2714 2719	Sta 22.21 41.74 71.28 77.9 91.21	Elev 2704 2699 2702 2707 2715
Manning's n Va Sta n V 0 .0		num= n Val .035	3 Sta 94.06	n Val .035				
Bank Sta: Left	_	Lengths:	Left Cl	nannel 195.8	Right 223.9	Coeff	Contr.	Expan.
CROSS SECTION								
RIVER: Unnamed REACH: Main1	l Wash	RS: 1200						
0 27 19.16 27 22.77 27 26.28 27 37.91 26 70.83 27 71.7 27 74.08 27	ion Data ev Sta 16 .24 11 19.86 106 23.47 101 27.17 195 64.52 100 70.92 105 72.21 10 74.34	num= Elev 2716 2710 2705 2700 2696 2701 2706 2711	41 Sta 10.59 20.62 24.18 29.23 67.8 71.09 72.72 77.17	Elev 2714 2709 2704 2699 2697 2702 2707 2712	Sta 13.66 21.34 24.9 30.97 69.22 71.2 73.17 80.26	Elev 2713 2708 2703 2698 2698 2703 2708 2713	Sta 16.72 22.05 25.61 35.17 70.64 71.31 73.65 86.35	Elev 2712 2707 2702 2696 2699 2704 2709 2715

Manning's n Values Sta n Val Sta	num= n Val	3 Sta	n Val				
0 .035 0	.035	100	.035				
Bank Sta: Left Right 0 100	Lengths:	Left C 99.59	hannel 208.99	Right 220.51	Coeff	Contr.	Expan.
CROSS SECTION							
RIVER: Unnamed Wash REACH: Main1	RS: 1100						
INPUT Description:	MODE THROUGH	0.0					
Station Elevation Data Sta Elev Sta	num= Elev	29 Sta	Elev	Sta	Elev	Sta	Elev
0 2707 5.35	2707	8.38	2706	9.68	2705	12.44	2703
13.93 2702 15.38	2701	17.01	2700	18.58	2699	21.52	2697
22.94 2696 26.14	2694	29.68	2693	34.53	2692	38.4	2691
56.38 2691 57.13	2692	57.9	2693	59.43	2695	60.24	2696
61.29 2697 62.43	2698	63.9	2699	65.12	2700	66.01	2701
66.45 2702 66.68	2703	66.92	2704	74.91	2705		
Manning's n Values	num=	3					
Sta n Val Sta	n Val	Sta	n Val				
0 .035 0	.035	74.91	.035				
Bank Sta: Left Right 0 74.91	Lengths:	Left 0	hannel	Right	Coeff	Contr.	Expan.
0 /4.91		73.12	107.13	202.7		• •	
CROSS SECTION							
RIVER: Unnamed Wash							
REACH: Main1	RS: 1000						
REACH: Main1	RS: 1000						
	RS: 1000						
REACH: Mainl	RS: 1000	30					
REACH: Main1 INPUT Description:	num= Elev	30 Sta	Elev	Sta	Elev	Sta	Elev
REACH: Main1 INPUT Description: Station Elevation Data Sta Elev Sta 0 2700 1.85	num= Elev 2697	30 Sta 4.99	2695	7.03	2694	9.01	2693
REACH: Mainl INPUT Description: Station Elevation Data Sta Elev Sta 0 2700 1.85 15.23 2690 17.81	num= Elev 2697 2689	30 Sta 4.99 23.14	2695 2688	7.03 37.9	2694 2687.36	9.01 46.38	2693 2687
REACH: Mainl INPUT Description: Station Elevation Data Sta Elev Sta 0 2700 1.85 15.23 2690 17.81 53.45 2687 55.47	num= Elev 2697 2689 2688	30 Sta 4.99 23.14 56.45	2695 2688 2689	7.03 37.9 56.76	2694 2687.36 2690	9.01 46.38 57.1	2693 2687 2691
REACH: Main1 INPUT Description: Station Elevation Data Sta Elev Sta 0 2700 1.85 15.23 2690 17.81 53.45 2687 55.47 57.5 2692 59.29	num= Elev 2697 2689 2688 2694	30 Sta 4.99 23.14 56.45 60.1	2695 2688 2689 2695	7.03 37.9 56.76 60.84	2694 2687.36 2690 2696	9.01 46.38 57.1 61.57	2693 2687 2691 2697
REACH: Main1 INPUT Description: Station Elevation Data Sta Elev Sta 0 2700 1.85 15.23 2690 17.81 53.45 2687 55.47 57.5 2692 59.29 62.25 2698 62.94	num= Elev 2697 2689 2688 2694 2699	30 Sta 4.99 23.14 56.45	2695 2688 2689	7.03 37.9 56.76 60.84 69.55	2694 2687.36 2690	9.01 46.38 57.1	2693 2687 2691
REACH: Main1 INPUT Description: Station Elevation Data	num= Elev 2697 2689 2688 2694	30 Sta 4.99 23.14 56.45 60.1 67.06	2695 2688 2689 2695 2701	7.03 37.9 56.76 60.84	2694 2687.36 2690 2696 2702	9.01 46.38 57.1 61.57 72.11	2693 2687 2691 2697 2703
REACH: Mainl INPUT Description: Station Elevation Data Sta Elev Sta 0 2700 1.85 15.23 2690 17.81 53.45 2687 55.47 57.5 2692 59.29 62.25 2698 62.94 72.82 2704 73.47 Manning's n Values	num= Elev 2697 2689 2688 2694 2699 2705	30 Sta 4.99 23.14 56.45 60.1 67.06 75.18	2695 2688 2689 2695 2701 2707	7.03 37.9 56.76 60.84 69.55	2694 2687.36 2690 2696 2702	9.01 46.38 57.1 61.57 72.11	2693 2687 2691 2697 2703
REACH: Main1 INPUT Description: Station Elevation Data Sta Elev Sta 0 2700 1.85 15.23 2690 17.81 53.45 2687 55.47 57.5 2692 59.29 62.25 2698 62.94 72.82 2704 73.47 Manning's n Values Sta n Val	num= Elev 2697 2689 2688 2694 2699 2705 num= n Val	30 Sta 4.99 23.14 56.45 60.1 67.06 75.18	2695 2688 2689 2695 2701 2707 n Val	7.03 37.9 56.76 60.84 69.55	2694 2687.36 2690 2696 2702	9.01 46.38 57.1 61.57 72.11	2693 2687 2691 2697 2703
REACH: Mainl INPUT Description: Station Elevation Data Sta Elev Sta 0 2700 1.85 15.23 2690 17.81 53.45 2687 55.47 57.5 2692 59.29 62.25 2698 62.94 72.82 2704 73.47 Manning's n Values	num= Elev 2697 2689 2688 2694 2699 2705	30 Sta 4.99 23.14 56.45 60.1 67.06 75.18	2695 2688 2689 2695 2701 2707	7.03 37.9 56.76 60.84 69.55	2694 2687.36 2690 2696 2702	9.01 46.38 57.1 61.57 72.11	2693 2687 2691 2697 2703
REACH: Main1 INPUT Description: Station Elevation Data Sta Elev Sta 0 2700 1.85 15.23 2690 17.81 53.45 2687 55.47 57.5 2692 59.29 62.25 2698 62.94 72.82 2704 73.47 Manning's n Values Sta n Val	num= Elev 2697 2689 2688 2694 2699 2705 num= n Val .035 Lengths:	30 Sta 4.99 23.14 56.45 60.1 67.06 75.18 3 Sta 82.18	2695 2688 2689 2695 2701 2707 n Val	7.03 37.9 56.76 60.84 69.55 77.09	2694 2687.36 2690 2696 2702 2708	9.01 46.38 57.1 61.57 72.11	2693 2687 2691 2697 2703
REACH: Mainl INPUT Description: Station Elevation Data Sta Elev Sta 0 2700 1.85 15.23 2690 17.81 53.45 2687 55.47 57.5 2692 59.29 62.25 2698 62.94 72.82 2704 73.47 Manning's n Values Sta n Val Sta 0 .035 0 Bank Sta: Left Right 0 82.18	num= Elev 2697 2689 2688 2694 2699 2705 num= n Val .035 Lengths:	30 Sta 4.99 23.14 56.45 60.1 67.06 75.18 3 Sta 82.18	2695 2688 2689 2695 2701 2707 n Val .035	7.03 37.9 56.76 60.84 69.55 77.09	2694 2687.36 2690 2696 2702 2708	9.01 46.38 57.1 61.57 72.11 82.18	2693 2687 2691 2697 2703 2709
REACH: Main1 INPUT Description: Station Elevation Data Sta Elev Sta 0 2700 1.85 15.23 2690 17.81 53.45 2687 55.47 57.5 2692 59.29 62.25 2698 62.94 72.82 2704 73.47 Manning's n Values Sta n Values Sta n Values O .035 0 Bank Sta: Left Right	num= Elev 2697 2689 2688 2694 2699 2705 num= n Val .035 Lengths:	30 Sta 4.99 23.14 56.45 60.1 67.06 75.18 3 Sta 82.18	2695 2688 2689 2695 2701 2707 n Val .035	7.03 37.9 56.76 60.84 69.55 77.09	2694 2687.36 2690 2696 2702 2708	9.01 46.38 57.1 61.57 72.11 82.18	2693 2687 2691 2697 2703 2709
REACH: Mainl INPUT Description: Station Elevation Data Sta Elev Sta 0 2700 1.85 15.23 2690 17.81 53.45 2687 55.47 57.5 2692 59.29 62.25 2698 62.94 72.82 2704 73.47 Manning's n Values Sta n Val Sta 0 .035 0 Bank Sta: Left Right 0 82.18	num= Elev 2697 2689 2688 2694 2699 2705 num= n Val .035 Lengths:	30 Sta 4.99 23.14 56.45 60.1 67.06 75.18 3 Sta 82.18	2695 2688 2689 2695 2701 2707 n Val .035	7.03 37.9 56.76 60.84 69.55 77.09	2694 2687.36 2690 2696 2702 2708	9.01 46.38 57.1 61.57 72.11 82.18	2693 2687 2691 2697 2703 2709
REACH: Main1 INPUT Description: Station Elevation Data Sta Elev Sta 0 2700 1.85 15.23 2690 17.81 53.45 2687 55.47 57.5 2692 59.29 62.25 2698 62.94 72.82 2704 73.47 Manning's n Values Sta n Val Sta 0 .035 0 Bank Sta: Left Right 0 82.18 CROSS SECTION RIVER: Unnamed Wash REACH: Main1	num= Elev 2697 2689 2688 2694 2699 2705 num= n Val .035 Lengths:	30 Sta 4.99 23.14 56.45 60.1 67.06 75.18 3 Sta 82.18	2695 2688 2689 2695 2701 2707 n Val .035	7.03 37.9 56.76 60.84 69.55 77.09	2694 2687.36 2690 2696 2702 2708	9.01 46.38 57.1 61.57 72.11 82.18	2693 2687 2691 2697 2703 2709
REACH: Main1 INPUT Description: Station Elevation Data Sta Elev Sta 0 2700 1.85 15.23 2690 17.81 53.45 2687 55.47 57.5 2692 59.29 62.25 2698 62.94 72.82 2704 73.47 Manning's n Values Sta n Val Sta 0 .035 0 Bank Sta: Left Right 0 82.18 CROSS SECTION RIVER: Unnamed Wash REACH: Main1 INPUT	num= Elev 2697 2689 2688 2694 2699 2705 num= n Val .035 Lengths:	30 Sta 4.99 23.14 56.45 60.1 67.06 75.18 3 Sta 82.18	2695 2688 2689 2695 2701 2707 n Val .035	7.03 37.9 56.76 60.84 69.55 77.09	2694 2687.36 2690 2696 2702 2708	9.01 46.38 57.1 61.57 72.11 82.18	2693 2687 2691 2697 2703 2709
REACH: Main1 INPUT Description: Station Elevation Data	num= Elev 2697 2689 2688 2694 2699 2705 num= n Val .035 Lengths:	30 Sta 4.99 23.14 56.45 60.1 67.06 75.18 3 Sta 82.18 Left (2695 2688 2689 2695 2701 2707 n Val .035	7.03 37.9 56.76 60.84 69.55 77.09	2694 2687.36 2690 2696 2702 2708	9.01 46.38 57.1 61.57 72.11 82.18	2693 2687 2691 2697 2703 2709
REACH: Main1 INPUT Description: Station Elevation Data Sta Elev Sta 0 2700 1.85 15.23 2690 17.81 53.45 2687 55.47 57.5 2692 59.29 62.25 2698 62.94 72.82 2704 73.47 Manning's n Values Sta n Val Sta 0 .035 0 Bank Sta: Left Right 0 82.18 CROSS SECTION RIVER: Unnamed Wash REACH: Main1 INPUT	num= Elev 2697 2689 2688 2694 2699 2705 num= n Val .035 Lengths:	30 Sta 4.99 23.14 56.45 60.1 67.06 75.18 3 Sta 82.18	2695 2688 2689 2695 2701 2707 n Val .035	7.03 37.9 56.76 60.84 69.55 77.09	2694 2687.36 2690 2696 2702 2708	9.01 46.38 57.1 61.57 72.11 82.18	2693 2687 2691 2697 2703 2709
REACH: Main1 INPUT Description: Station Elevation Data	num= Elev 2697 2689 2688 2694 2699 2705 num= n Val .035 Lengths: 2	30 Sta 4.99 23.14 56.45 60.1 67.06 75.18 3 Sta 82.18 Left (2695 2688 2689 2695 2701 2707 n Val .035 Channel 199.88	7.03 37.9 56.76 60.84 69.55 77.09 Right 200.05	2694 2687.36 2690 2696 2702 2708	9.01 46.38 57.1 61.57 72.11 82.18 Contr.	2693 2687 2691 2697 2703 2709 Expan.
REACH: Main1 INPUT Description: Station Elevation Data Sta Elev Sta 0 2700 1.85 15.23 2690 17.81 53.45 2687 55.47 57.5 2692 59.29 62.25 2698 62.94 72.82 2704 73.47 Manning's n Values Sta n Val Sta 0 .035 0 Bank Sta: Left Right 0 82.18 CROSS SECTION RIVER: Unnamed Wash REACH: Main1 INPUT Description: Station Elevation Data Sta Elev Sta	num= Elev 2697 2689 2688 2694 2699 2705 num= n Val .035 Lengths: 2 RS: 900	30 Sta 4.99 23.14 56.45 60.1 67.06 75.18 3 Sta 82.18 Left (200.05	2695 2688 2689 2695 2701 2707 n Val .035 Channel 199.88	7.03 37.9 56.76 60.84 69.55 77.09 Right 200.05	2694 2687.36 2690 2696 2702 2708 Coeff	9.01 46.38 57.1 61.57 72.11 82.18 Contr. .1	2693 2687 2691 2697 2703 2709 Expan. .3
REACH: Main1 INPUT Description: Station Elevation Data Sta Elev Sta 0 2700 1.85 15.23 2690 17.81 53.45 2687 55.47 57.5 2692 59.29 62.25 2698 62.94 72.82 2704 73.47 Manning's n Values Sta n Val Sta 0 .035 0 Bank Sta: Left Right 0 82.18 CROSS SECTION RIVER: Unnamed Wash REACH: Main1 INPUT Description: Station Elevation Data Sta Elev Sta 0 2697 2.01 10.78 2690 11.92 16.3 2685 17.24	num= Elev 2697 2689 2688 2694 2699 2705 num= n Val .035 Lengths: 2 RS: 900 num= Elev 2696 2689 2684	30 Sta 4.99 23.14 56.45 60.1 67.06 75.18 3 Sta 82.18 Left (00.05	2695 2688 2689 2695 2701 2707 n Val .035 Channel 199.88	7.03 37.9 56.76 60.84 69.55 77.09 Right 200.05	2694 2687.36 2690 2696 2702 2708 Coeff	9.01 46.38 57.1 61.57 72.11 82.18 Contr. .1	2693 2687 2691 2697 2703 2709 Expan. .3
REACH: Main1 INPUT Description: Station Elevation Data Sta Elev Sta 0 2700 1.85 15.23 2690 17.81 53.45 2687 55.47 57.5 2692 59.29 62.25 2698 62.94 72.82 2704 73.47 Manning's n Values Sta n Val Sta 0 .035 0 Bank Sta: Left Right 0 82.18 CROSS SECTION RIVER: Unnamed Wash REACH: Main1 INPUT Description: Station Elevation Data Sta Elev Sta 0 2697 2.01 10.78 2690 11.92	num= Elev 2697 2689 2688 2694 2699 2705 num= n Val .035 Lengths: RS: 900 num= Elev 2696 2689	30 Sta 4.99 23.14 56.45 60.1 67.06 75.18 3 Sta 82.18 Left (200.05	2695 2688 2689 2695 2701 2707 n Val .035 Channel 199.88	7.03 37.9 56.76 60.84 69.55 77.09 Right 200.05	2694 2687.36 2690 2696 2702 2708 Coeff	9.01 46.38 57.1 61.57 72.11 82.18 Contr. .1	2693 2687 2691 2697 2703 2709 Expan. .3

54.53 2694 61.14	2696	68.17	2697	76.52	2697	
Manning's n Values Sta n Val Sta	num= n Val	3 Sta	n Val			
Sta n Val Sta 0 .035 0	.035	76.52	.035			
Bank Sta: Left Right 0 76.52	Lengths: 2		nannel 199.87	Right 200.06	Coeff Contr.	Expan.
CROSS SECTION						
RIVER: Unnamed Wash REACH: Main1	RS: 800					
INPUT Description:						
Station Elevation Data	num=	32	T7	Ch-	Tiles Cho	W]
Sta Elev Sta 0 2695 5.28	Elev 2694	Sta 9.97	Elev 2693	Sta 16.15	Elev Sta 2691 17.35	Elev 2690
18.64 2689 19.91	2688	21.18	2687	22.6	2686 24.45	2685
26.51 2684 28.59	2683	29.67	2682	30.77	2681 31.87	2680
41.31 2679 45.06	2679	53.43	2679	55.64	2680 57.69	2681
59.22 2682 60.74 67.32 2687 69.12	2683 2688	62.39 70.94	2684 2689	64.07 72.73	2685 65.7 2690 76.3	2686 2692
78.37 2693 88.81	2695	70.94	2009	12.13	2000 70.3	2072
Manning's n Values	num=	3				
Sta n Val Sta	n Val	Sta	n Val			
0 .035 0	.035	88.81	.035			
Bank Sta: Left Right 0 88.81	Lengths:		hannel 199.91	Right 200	Coeff Contr.	Expan.
CROSS SECTION						
CRODD DECITOR						
RIVER: Unnamed Wash						
RIVER: Unnamed Wash REACH: Main1	RS: 700					
REACH: Main1	RS: 700					
	RS: 700					
REACH: Main1 INPUT	RS: 700	32				
REACH: Main1 INPUT Description: Station Elevation Data Sta Elev Sta	num= Elev	Sta	Elev	Sta	Elev Sta	
REACH: Main1 INPUT Description: Station Elevation Data Sta Elev Sta 0 2692 13.46	num= Elev 2690	Sta 20.83	2689	24.82	2688 26.72	2687
REACH: Main1 INPUT Description: Station Elevation Data Sta Elev Sta 0 2692 13.46 27.64 2686 28.5	num= Elev 2690 2685	Sta 20.83 29.4	2689 2684	24.82 30.34	2688 26.72 2683 31.24	2687 2682
REACH: Main1 INPUT Description: Station Elevation Data Sta Elev Sta 0 2692 13.46 27.64 2686 28.5 32.5 2681 33.91	num= Elev 2690	Sta 20.83	2689	24.82	2688 26.72	2687
REACH: Main1 INPUT Description: Station Elevation Data Sta Elev Sta 0 2692 13.46 27.64 2686 28.5 32.5 2681 33.91	num= Elev 2690 2685 2680 2676	Sta 20.83 29.4 35.36	2689 2684 2679 2676	24.82 30.34 36.22	2688 26.72 2683 31.24 2678 37	2687 2682 2677 2678
REACH: Main1 INPUT Description: Station Elevation Data Sta Elev Sta 0 2692 13.46 27.64 2686 28.5 32.5 2681 33.91 40.67 2676 49.89 66.7 2679 68.22 75.51 2684 76.92	num= Elev 2690 2685 2680 2676 2680 2685	Sta 20.83 29.4 35.36 60.98	2689 2684 2679 2676 2681	24.82 30.34 36.22 63.89 72.05	2688 26.72 2683 31.24 2678 37 2677 65.31 2682 73.98	2687 2682 2677 2678 2683
REACH: Main1 INPUT Description: Station Elevation Data Sta Elev Sta 0 2692 13.46 27.64 2686 28.5 32.5 2681 33.91 40.67 2676 49.89 66.7 2679 68.22	num= Elev 2690 2685 2680 2676 2680 2685	Sta 20.83 29.4 35.36 60.98 70.18	2689 2684 2679 2676 2681	24.82 30.34 36.22 63.89 72.05	2688 26.72 2683 31.24 2678 37 2677 65.31 2682 73.98	2687 2682 2677 2678 2683
REACH: Main1 INPUT Description: Station Elevation Data Sta Elev Sta 0 2692 13.46 27.64 2686 28.5 32.5 2681 33.91 40.67 2676 49.89 66.7 2679 68.22 75.51 2684 76.92	num= Elev 2690 2685 2680 2676 2680 2685	Sta 20.83 29.4 35.36 60.98 70.18	2689 2684 2679 2676 2681	24.82 30.34 36.22 63.89 72.05	2688 26.72 2683 31.24 2678 37 2677 65.31 2682 73.98	2687 2682 2677 2678 2683
REACH: Main1 INPUT Description: Station Elevation Data Sta Elev Sta 0 2692 13.46 27.64 2686 28.5 32.5 2681 33.91 40.67 2676 49.89 66.7 2679 68.22 75.51 2684 76.92 85.76 2689 93.54 Manning's n Values Sta n Val	num= Elev 2690 2685 2680 2676 2680 2685 2689 num= n Val	Sta 20.83 29.4 35.36 60.98 70.18 78.38	2689 2684 2679 2676 2681 2686	24.82 30.34 36.22 63.89 72.05	2688 26.72 2683 31.24 2678 37 2677 65.31 2682 73.98	2687 2682 2677 2678 2683
REACH: Main1 INPUT Description: Station Elevation Data Sta Elev Sta 0 2692 13.46 27.64 2686 28.5 32.5 2681 33.91 40.67 2676 49.89 66.7 2679 68.22 75.51 2684 76.92 85.76 2689 93.54 Manning's n Values	num= Elev 2690 2685 2680 2676 2680 2685 2689 num= n Val	Sta 20.83 29.4 35.36 60.98 70.18 78.38	2689 2684 2679 2676 2681 2686	24.82 30.34 36.22 63.89 72.05	2688 26.72 2683 31.24 2678 37 2677 65.31 2682 73.98	2687 2682 2677 2678 2683
REACH: Main1 INPUT Description: Station Elevation Data Sta Elev Sta 0 2692 13.46 27.64 2686 28.5 32.5 2681 33.91 40.67 2676 49.89 66.7 2679 68.22 75.51 2684 76.92 85.76 2689 93.54 Manning's n Values Sta n Val 0 .035 0	num= Elev 2690 2685 2680 2676 2680 2685 2689 num= n Val .035 Lengths:	Sta 20.83 29.4 35.36 60.98 70.18 78.38	2689 2684 2679 2676 2681 2686 n Val	24.82 30.34 36.22 63.89 72.05	2688 26.72 2683 31.24 2678 37 2677 65.31 2682 73.98 2687 82.47	2687 2682 2677 2678 2683 2688
REACH: Main1 INPUT Description: Station Elevation Data Sta Elev Sta 0 2692 13.46 27.64 2686 28.5 32.5 2681 33.91 40.67 2676 49.89 66.7 2679 68.22 75.51 2684 76.92 85.76 2689 93.54 Manning's n Values Sta n Val 0 .035 0 Bank Sta: Left Right	num= Elev 2690 2685 2680 2676 2680 2685 2689 num= n Val .035 Lengths:	Sta 20.83 29.4 35.36 60.98 70.18 78.38 3 Sta 93.54	2689 2684 2679 2676 2681 2686 n Val .035	24.82 30.34 36.22 63.89 72.05 79.79	2688 26.72 2683 31.24 2678 37 2677 65.31 2682 73.98 2687 82.47 Coeff Contr.	2687 2682 2677 2678 2683 2688
REACH: Main1 INPUT Description: Station Elevation Data Sta Elev Sta 0 2692 13.46 27.64 2686 28.5 32.5 2681 33.91 40.67 2676 49.89 66.7 2679 68.22 75.51 2684 76.92 85.76 2689 93.54 Manning's n Values Sta n Val 0 .035 0 Bank Sta: Left Right 0 93.54	num= Elev 2690 2685 2680 2676 2680 2685 2689 num= n Val .035 Lengths:	Sta 20.83 29.4 35.36 60.98 70.18 78.38 3 Sta 93.54	2689 2684 2679 2676 2681 2686 n Val .035	24.82 30.34 36.22 63.89 72.05 79.79	2688 26.72 2683 31.24 2678 37 2677 65.31 2682 73.98 2687 82.47 Coeff Contr.	2687 2682 2677 2678 2683 2688
REACH: Main1 INPUT Description: Station Elevation Data Sta Elev Sta 0 2692 13.46 27.64 2686 28.5 32.5 2681 33.91 40.67 2676 49.89 66.7 2679 68.22 75.51 2684 76.92 85.76 2689 93.54 Manning's n Values Sta n Val Sta 0 .035 0 Bank Sta: Left Right 0 93.54 CROSS SECTION	num= Elev 2690 2685 2680 2676 2680 2685 2689 num= n Val .035 Lengths:	Sta 20.83 29.4 35.36 60.98 70.18 78.38 3 Sta 93.54	2689 2684 2679 2676 2681 2686 n Val .035	24.82 30.34 36.22 63.89 72.05 79.79	2688 26.72 2683 31.24 2678 37 2677 65.31 2682 73.98 2687 82.47 Coeff Contr.	2687 2682 2677 2678 2683 2688
REACH: Main1 INPUT Description: Station Elevation Data Sta Elev Sta 0 2692 13.46 27.64 2686 28.5 32.5 2681 33.91 40.67 2676 49.89 66.7 2679 68.22 75.51 2684 76.92 85.76 2689 93.54 Manning's n Values Sta n Val Sta 0 .035 0 Bank Sta: Left Right 0 93.54 CROSS SECTION RIVER: Unnamed Wash REACH: Main1	num= Elev 2690 2685 2680 2676 2680 2685 2689 num= n Val .035 Lengths:	Sta 20.83 29.4 35.36 60.98 70.18 78.38 3 Sta 93.54	2689 2684 2679 2676 2681 2686 n Val .035	24.82 30.34 36.22 63.89 72.05 79.79	2688 26.72 2683 31.24 2678 37 2677 65.31 2682 73.98 2687 82.47 Coeff Contr.	2687 2682 2677 2678 2683 2688
REACH: Main1 INPUT Description: Station Elevation Data Sta Elev Sta 0 2692 13.46 27.64 2686 28.5 32.5 2681 33.91 40.67 2676 49.89 66.7 2679 68.22 75.51 2684 76.92 85.76 2689 93.54 Manning's n Values Sta n Val Sta 0 .035 0 Bank Sta: Left Right 0 93.54 CROSS SECTION RIVER: Unnamed Wash	num= Elev 2690 2685 2680 2676 2680 2685 2689 num= n Val .035 Lengths:	Sta 20.83 29.4 35.36 60.98 70.18 78.38 3 Sta 93.54	2689 2684 2679 2676 2681 2686 n Val .035	24.82 30.34 36.22 63.89 72.05 79.79	2688 26.72 2683 31.24 2678 37 2677 65.31 2682 73.98 2687 82.47 Coeff Contr.	2687 2682 2677 2678 2683 2688
REACH: Main1 INPUT Description: Station Elevation Data	num= Elev 2690 2685 2680 2685 2689 num= n Val .035 Lengths: RS: 600	Sta 20.83 29.4 35.36 60.98 70.18 78.38 3 Sta 93.54 Left C	2689 2684 2679 2676 2681 2686 n Val .035 hannel 90.05	24.82 30.34 36.22 63.89 72.05 79.79	2688 26.72 2683 31.24 2678 37 2677 65.31 2682 73.98 2687 82.47 Coeff Contr1	2687 2682 2677 2678 2683 2688 Expan.
REACH: Main1 INPUT Description: Station Elevation Data	num= Elev 2690 2685 2680 2676 2685 2689 num= n Val .035 Lengths: RS: 600	Sta 20.83 29.4 35.36 60.98 70.18 78.38 3 Sta 93.54 Left C	2689 2684 2679 2676 2681 2686 n Val .035 hannel 90.05	24.82 30.34 36.22 63.89 72.05 79.79 Right 91.05	2688 26.72 2683 31.24 2678 37 2677 65.31 2682 73.98 2687 82.47 Coeff Contr1	2687 2682 2677 2678 2683 2688 Expan. .3
REACH: Main1 INPUT Description: Station Elevation Data	num= Elev 2690 2685 2680 2676 2685 2689 num= n Val .035 Lengths: RS: 600	Sta 20.83 29.4 35.36 60.98 70.18 78.38 3 Sta 93.54 Left C	2689 2684 2679 2676 2681 2686 n Val .035 hannel 90.05	24.82 30.34 36.22 63.89 72.05 79.79 Right 91.05	2688 26.72 2683 31.24 2678 37 2677 65.31 2682 73.98 2687 82.47 Coeff Contr1	2687 2682 2677 2678 2683 2688 Expan. .3

35.71 2682 36.05	2681 36.46 2680	37.14 2679 39.75 2678
42.44 2677 44.85	2676 46.95 2675	49.06 2674 61.8 2674
76.28 2675 80.1		89.32 2679 91.29 2680
93.62 2681 96.54 112.97 2682 122.92	2682 98.84 2683	106.09 2683 110.53 2682
112.97 2682 122.92 124.94 2678 125.31	2682 123.43 2681 2677 125.68 2676	124.01 2680 124.46 2679 126.77 2675 128.15 2674
139.97 2675 142.29	2676 144.19 2677	146.82 2678 149.09 2679
151.09 2680 153.17	2681 156.53 2682	159.47 2683 165.89 2685
167.92 2686 170.23	2687 172.74 2688	
Manning's n Values	num= 3	
Sta n Val Sta	n Val Sta n Val	
0 .035 0	.035 172.74 .035	
Bank Sta: Left Right	Lengths: Left Channel	Right Coeff Contr. Expan.
0 172.74		169.79 .1 .3
Ineffective Flow num=	1	
Sta L Sta R Elev	Permanent	
106.09 172.74 2690	F	
and anomical		
CROSS SECTION		
RIVER: Unnamed Wash		
REACH: Main1	RS: 500	
INPUT		
Description:		
Station Elevation Data	num= 29	Sta Elev Sta Elev
Sta Elev Sta 0 2687 16.29	Elev Sta Elev 2686 33.47 2685	Sta Elev Sta Elev 48.37 2684 54.57 2683
62.81 2681 65.1	2680 67.73 2679	70.01 2678 72.24 2677
73.94 2676 77.08	2673 90.18 2672.27	94.92 2672 106.5 2672
113.63 2673 126.37	2676 128.11 2677	
134.08 2680 139.43	2681 153.77 2683	159.91 2684 162.55 2685
164.37 2686 166.37	2687 168.53 2688	187.05 2690
**		
Manning's n Values Sta n Val Sta	num= 2 n Val	
Sta n Val Sta 0 .03 48.37	.035	
0 .03 10.37	.033	
Bank Sta: Left Right	Lengths: Left Channel	Right Coeff Contr. Expan.
0 187.05	58.23 51.31	62.51 .1 .3
CROSS SECTION		
RIVER: Unnamed Wash		
REACH: Main1	RS: 400	
INPUT		
Description:		
Station Elevation Data	num= 41	Cha Diana Cha Diana
Sta Elev Sta	Elev Sta Elev	Sta Elev Sta Elev 16.28 2683 28.94 2683
0 2688.01 6.8 32.59 2684 36.71	2685 9.24 2684 2685 41.98 2685	16.28 2683 28.94 2683 55.92 2684 78.44 2684
97.61 2684 98.46	2683 100.13 2681	100.9 2680 101.76 2679
102.54 2678 103.66	2677 105.88 2676	108.08 2675 110.35 2674
112.62 2673 114.93	2672 118.66 2671	154.09 2671 157.32 2672
159.33 2673 161.13	2674 161.97 2675	162.88 2676 163.89 2677
164.96 2678 166.09	2679 167.41 2680	171.11 2683 177.76 2683
204.74 2683 212.73	2684 215.85 2685	218.94 2686 222.3 2687
235.52 2689		
Manningle n Walnes	num= 2	
Manning's n Values Sta n Val Sta	num= 2 n Val	
0 .03 97.61	.035	
Bank Sta: Left Right	Lengths: Left Channel	Right Coeff Contr. Expan.
0 235.52	116.72 99.89	88.03 .1 .3

RIVER: Unnamed Wash		e .
REACH: Main1	RS: 300	
INPUT		
Description:		8
Station Elevation Data	num= 35	-1
Sta Elev Sta	Elev Sta Elev	
0 2686.85 10.18	2687 26.16 2686	56.92 2685 67.77 2683
72.93 2682 74.69	2681 75.93 2680	77.09 2679 78.28 2678
80.13 2677 81.83	2676 83.53 2675	85.1 2674 89.88 2672
92.95 2671 96.11	2670 99.27 2669	125.7 2669 131 2670
133.85 2671 140.06	2673 144.25 2674	
159.33 2679 162.93	2680 173.51 2681 2685 212.52 2686	187.26 2682 195.52 2683 216.49 2687 220.29 2688
202 2684 207.73	2685 212.52 2686	216.49 2667 220.29 2688
Manning's n Values	num= 2	
Sta n Values	n Val	
0 .03 56.92	.035	
003 3032	.033	
Bank Sta: Left Right	Lengths: Left Channel	Right Coeff Contr. Expan.
0 220.29	145.1 100.88	52 .1 .3
CROSS SECTION		
RIVER: Unnamed Wash		Δ.
REACH: Main1	RS: 200	
INPUT		
Description:		
Station Elevation Data	num= 49	
Sta Elev Sta	Elev Sta Elev	
0 2693 1.64	2692 3.32 2691	
9.35 2688 11.06	2687 12.77 2686	
18.24 2683 23	2682 25.51 2681	28.74 2680 31.03 2679
31.44 2678 32.35	2676 33 2675	33.89 2674 34.55 2673
35.14 2672 35.58	2671 36.12 2670	36.63 2669 37.08 2668
38.91 2668 40.82	2668 41.23 2669	
42.85 2672 43.48	2673 44.25 2674	46.26 2675 49.04 2676
59.12 2678 63.36	2679 66.9 2680	70.72 2681 82.01 2682 127.96 2686 130.18 2687
117.78 2683 123.57	2684 125.81 2685	
132.3 2688 134.11	2689 135.75 2690	137.7 2691
Manning's n Values	num= 3	
Sta n Val Sta	n Val Sta n Val	
0 035 0		
0 .035 0	.035 137.7 .035	

Bank Sta: Left Right Coeff Contr. Expan. 0 137.7 .3 .5

SUMMARY OF MANNING'S N VALUES

River:Unnamed Wash

Reach	River Sta.	n1	n2	n3
Main1 Main1 Main1 Main1 Main1	2700 2600 2500 2400 2300	.035 .035 .035 .035	.035 .035 .035 .035	.035 .035 .035 .035
Main1 Main1 Main1 Main1 Main1	2200 2100 2000 1900 1800	.035 .035 .035 .035	.035 .035 .03 .03	.035

Main1	1700	.035	.035	.035
Main1	1600	.035	.035	.035
Main1	1500	.035	.035	.035
Main1	1400	.035	.035	.035
Main1	1300	.035	.035	.035
Main1	1200	.035	.035	.035
Main1	1100	.035	.035	.035
Main1	1000	.035	.035	.035
Main1	900	.035	.035	.035
Main1	800	.035	.035	.035
Main1	700	.035	.035	.035
Main1	600	.035	.035	.035
Main1	500	.03	.035	
Main1	400	.03	.035	
Mainl	300	.03	.035	
Main1	200	.035	.035	.035

SUMMARY OF REACH LENGTHS

River: Unnamed Wash

Reach	River Sta.	Left	Channel	Right
Mainl	2700	95.75	98.69	107.97
Main1	2600	101.86	103.65	108.71
Main1	2500	108.74	100.43	96.31
Main1	2400	109.52	114.22	121.17
Main1	2300	191.53	193.81	198.19
Main1	2200	113.96	200.13	254.43
Main1	2100	231.94	197.1	162.04
Main1	2000	231.62	197.66	162.89
Main1	1900	122.47	101.94	85.19
Main1	1800	140.2	137.49	140.54
Main1	1700	145.9	141.68	135.05
Main1	1600	132.22	129.11	128.4
Main1	1500	270.26	260.99	251.15
Main1	1400	197.2	199.44	199.87
Main1	1300	170	195.8	223.9
Main1	1200	199.59	208.99	220.51
Main1	1100	173.12	189.13	202.7
Main1	1000	200.05	199.88	200.05
Main1	900	200.06	199.87	200.06
Main1	800	200	199.91	200
Main1	700	105.58	90.05	91.05
Main1	600	165.96	163.56	169.79
Main1	500	58.23	51.31	62.51
Main1	400	116.72	99.89	88.03
Main1	300	145.1	100.88	52
Main1	200			

SUMMARY OF CONTRACTION AND EXPANSION COEFFICIENTS River: Unnamed Wash

Reach	River Sta.	Contr.	Expan.
1900			
Main1	2700	.1	.3
Main1	2600	.1	.3
Main1	2500	.1	.3
Main1	2400	.1	.3
Main1	2300	.1	.3
Main1	2200	.1	.3
Main1	2100	.1	.3
Main1	2000	.1	.3
Main1	1900	.1	.3

Main1	1800	.1	.3
Main1	1700	.1	.3
Main1	1600	.1	.3
Main1	1500	.1	.3
Main1	1400	.1	.3
Main1	1300	.1	.3
Main1	1200	.1	.3
Main1	1100	.1	.3
Main1	1000	.1	.3
Main1	900	.1	.3
Main1	800	.1	.3
Main1	700	.1	.3
Main1	600	.1	.3
Main1	500	.1	.3
Mainl	400	.1	.3
Main1	300	.1	.3
Main1	200	.3	. 5

ERRORS WARNINGS AND NOTES

Errors Warnings and Notes for Plan : Main1

River: Unnamed Wash Reach: Main1 RS: 2700 Profile: PF 1

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth

for the water surface and continued on with the calculations.

Warning: The energy loss was greater than 1.0 ft $(0.3\ m)$. between the current and previous cross section. This may indicate

the need for additional cross sections.

Warning:During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated

water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The

program defaulted to critical depth.

River: Unnamed Wash Reach: Main1 RS: 2600 Profile: PF 1

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth

for the water surface and continued on with the calculations.

Warning: Divided flow computed for this cross-section.

Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate

the need for additional cross sections.

Warning:During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated

water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The

program defaulted to critical depth.

River: Unnamed Wash Reach: Main1 RS: 2500 Profile: PF 1

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth

for the water surface and continued on with the calculations.

Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate

the need for additional cross sections.

Warning:During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated

water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The

program defaulted to critical depth.

River: Unnamed Wash Reach: Main1 RS: 2400 Profile: PF 1

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth

for the water surface and continued on with the calculations.

Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections.

Warning: The energy loss was greater than 1.0 ft $(0.3\ m)$. between the current and previous cross section. This may indicate

the need for additional cross sections.

Warning:During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated

water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The

program defaulted to critical depth.

River: Unnamed Wash Reach: Main1 RS: 2300 Profile: PF 1

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth

for the water surface and continued on with the calculations.

Warning:The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate

the need for additional cross sections.

Warning:During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated

water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The

program defaulted to critical depth.

River: Unnamed Wash Reach: Main1 RS: 2200 Profile: PF 1

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth

for the water surface and continued on with the calculations.

Warning: The energy loss was greater than 1.0 ft $(0.3\ m)$. between the current and previous cross section. This may indicate

the need for additional cross sections.

 $\label{thm:warning:During} Warning: \text{During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated}$

water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The

program defaulted to critical depth.

River: Unnamed Wash Reach: Main1 RS: 2100 Profile: PF 1

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth

for the water surface and continued on with the calculations.

Warning: The energy loss was greater than 1.0 ft $(0.3\ m)$. between the current and previous cross section. This may indicate

the need for additional cross sections.

Warning:During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated

water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The

program defaulted to critical depth.

River: Unnamed Wash Reach: Main1 RS: 2000 Profile: PF 1

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth

for the water surface and continued on with the calculations.

Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections.

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4.

This may indicate the need for additional cross sections.

Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate

the need for additional cross sections.

Warning:During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated

water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The

program defaulted to critical depth.

River: Unnamed Wash Reach: Main1 RS: 1800 Profile: PF 1

Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections.

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4.

This may indicate the need for additional cross sections.

Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate

the need for additional cross sections.

River: Unnamed Wash Reach: Main1 RS: 1700 Profile: PF 1

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth

for the water surface and continued on with the calculations.

Warning: The velocity head has changed by more than 0.5 ft $(0.15\ m)$. This may indicate the need for additional cross sections.

Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate

the need for additional cross sections.

Warning:During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated

water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The

program defaulted to critical depth.

River: Unnamed Wash Reach: Main1 RS: 1600 Profile: PF 1

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth

for the water surface and continued on with the calculations.

Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections.

Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate

the need for additional cross sections.

Warning:During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated

water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The $\,$

program defaulted to critical depth.

River: Unnamed Wash Reach: Main1 RS: 1500 Profile: PF 1

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth

for the water surface and continued on with the calculations.

Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate

the need for additional cross sections.

Warning:During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated

water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The

program defaulted to critical depth.

River: Unnamed Wash Reach: Main1 RS: 1400 Profile: PF 1

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth

for the water surface and continued on with the calculations.

Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections.

Warning: The energy loss was greater than 1.0 ft $(0.3\ m)$. between the current and previous cross section. This may indicate

the need for additional cross sections.

 $\label{thm:warning:During} Warning: \mbox{During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated}$

water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The

program defaulted to critical depth.

River: Unnamed Wash Reach: Main1 RS: 1300 Profile: PF 1

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth

for the water surface and continued on with the calculations.

Warning: The energy loss was greater than 1.0 ft $(0.3\ m)$. between the current and previous cross section. This may indicate

the need for additional cross sections.

 $\label{thm:warning:During} Warning: \mbox{During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated}$

water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The

program defaulted to critical depth.

River: Unnamed Wash Reach: Main1 RS: 1200 Profile: PF 1

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth

for the water surface and continued on with the calculations.

Warning: The energy loss was greater than 1.0 ft $(0.3\ m)$. between the current and previous cross section. This may indicate

the need for additional cross sections.

Warning:During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated

water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The

program defaulted to critical depth.

River: Unnamed Wash Reach: Main1 RS: 1100 Profile: PF 1

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth

for the water surface and continued on with the calculations.

Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate

the need for additional cross sections.

Warning:During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated

water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The

program defaulted to critical depth.

River: Unnamed Wash Reach: Main1 RS: 1000 Profile: PF 1

Warning: The energy equation could not be balanced within the specified number of

iterations. The program used critical depth

for the water surface and continued on with the calculations.

Warning: The energy loss was greater than 1.0 ft $(0.3\ m)$. between the current and previous cross section. This may indicate

the need for additional cross sections.

Warning:During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated

water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The

program defaulted to critical depth.

River: Unnamed Wash Reach: Main1 RS: 900 Profile: PF 1

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth

for the water surface and continued on with the calculations.

Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate

the need for additional cross sections.

Warning:During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated

water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The

program defaulted to critical depth.

River: Unnamed Wash Reach: Main1 RS: 800 Profile: PF 1

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth

for the water surface and continued on with the calculations.

Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections.

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4.

This may indicate the need for additional cross sections.

Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate

the need for additional cross sections.

Warning:During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated

water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The

program defaulted to critical depth.

River: Unnamed Wash Reach: Main1 RS: 700 Profile: PF 1

Warning: The velocity head has changed by more than $0.5\ \mathrm{ft}\ (0.15\ \mathrm{m})$. This may indicate the need for additional cross sections.

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4.

This may indicate the need for additional cross sections.

River: Unnamed Wash Reach: Main1 RS: 600 Profile: PF 1

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4.

This may indicate the need for additional cross sections.

Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used.

River: Unnamed Wash Reach: Main1 RS: 300 Profile: PF 1

Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections.

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. $\qquad \qquad \text{This may indicate the need for additional cross sections.}$

HEC-RAS Plan: Main1 River: Unnamed Wash Reach: Main1 Profile: PF1

Reach	River Sta	Profile	Q Total	Min Ch Ei	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
			(cfs)	(#)	(#)	(ff)	(ff)	(ft/ft)	(ft/s)	(sq ft)	(#)	
Main1	2700	PF 1	2128.00	2756.00	2760.89	2760.89	2762.59	0.012774	10.46	203.44	60.70	1.01
Main1	2600	PF 1	2128.00	2752.00	2758.31	2758.31	2759.83	0.013663	06.6	214.95	71.48	1.01
Main1	2500	PF1	2128.00	2748.00	2754.37	2754.37	2755.99	0.013412	10.20	208.57	96.36	1.01
Main1	2400	PF1	2128.00	2747.00	2751.80	2751.80	2753.34	0.012747	9.95	213.77	69.59	1.00
Main1	2300	PF 1	2128.00	2744.00	2749.36	2749.36	2751.48	0.012119	11.68	182.19	43.51	1.01
Main1	2200	PF1	2128.00	2740.00	2745.49	2745.49	2747.48	0.012174	11.33	187.75	47.51	1.00
Main1	2100	PF1	2128.00	2736.00	2742.08	2742.08	2744.08	0.012150	11.35	187.55	46.89	1.00
Main1	2000	PF1	2128.00	2729.00	2735.65	2735.65	2737.77	0.012614	11.69	181.96	43.15	1.00
Main1	1900	PF1	2128.00	2724.00	2733.14	2731.64	2734.38	0.005770	8.94	237.92	43.40	0.67
Main1	1800	PF1	2128.00	2719.00	2732.45	2730.71	2733.66	0.008664	8.80	241.76	57.08	0.75
Main1	1700	PF 1	2227.00	2716.00	2728.08	2728.08	2731.68	0.019678	15.22	146.31	20.20	1.00
Main1	1600	PF1	2227.00	2711.00	2725.34	2725.34	2727.46	0.018419	11.67	190.81	45.98	1.01
Main1	1500	PF1	2472.00	2707.00	2720.77	2720.77	2724.15	0.018525	14.77	167.39	24.93	1.00
Main1	1400	PF 1	2472.00	2702.00	2713.84	2713.84	2716.92	0.016275	14.09	175.47	28.74	1.00
Main1	1300	PF 1	2472.00	2699.00	2704.43	2704.43	2706.46	0.012057	11.42	216.42	53.98	1.01
Main1	1200	PF 1	2472.00	2695.00	2700.84	2700.84	2703.15	0.012205	12.19	202.78	44.49	1.01
Main1	1100	PF 1	2472.00	2691.00	2697.30	2697.30	2699.76	0.012233	12.57	196.64	40.56	1.01
Main1	1000	PF 1	2472.00	2687.00	2692.52	2692.52	2694.72	0.012304	11.89	207.98	47.97	1.01
Main1	006	PF 1	2472.00	2683.00	2689.15	2689.15	2691.63	0.011974	12.63	195.65	39.48	1.00
Main1	800	PF 1	2493.00	2679.00	2685.65	2685.65	2688.05	0.011853	12.43	200.60	41.88	1.00
Main1	200	PF 1	2493.00	2676.00	2685.62	2682.23	2686.39	0.002350	7.03	354.61	49.85	0.46
Main1	009	PF 1	2493.00	2674.00	2685.89	2679.63	2686.14	0.000568	4.01	621.90	133.33	0.24
Main1	500	PF 1	4209.00	2672.00	2685.74	2678.92	2686.03	0.000687	4.33	971.83	143.10	0.29
Main1	400	PF 1	4209.00	2671.00	2685.77	2677.39	2685.97	0.000532	3.56	1181.20	213.18	0.27
Main1	300	PF 1	4209.00	2669.00	2685.77	2675.79	2685.92	0.000296	3.04	1382.45	178.22	0.19
Main1	200	PF 1	4209.00	2668.00	2684.83	2683.29	2685.76	0.004590	7.74	543.77	110.66	0.62

HEC-RAS ANALYSIS

EXISTING CONDITIONS MAIN 2

HEC-RAS Version 4.1.0 Jan 2010 U.S. Army Corps of Engineers Hydrologic Engineering Center 609 Second Street Davis, California

Х	Х	XXXXXX	XX	XX		XX	XX	XX		XXXX
X	X	X	X	X		X	X	X	X	X
X	X	X	X			X	X	X	X	X
XXXX	XXXX	XXXX	X		XXX	XX	XX	XXX	XXX	XXXX
X	X	X	X			X	X	X	X	X
X	X	X	X	X		X	X	X	X	X
X	X	XXXXXX	XX	XX		X	X	X	X	XXXXX

PROJECT DATA

Project Title: Main 2 - Existing Condition Project File : EXISTINGSOUTHWASH.prj Run Date and Time: 2/29/2016 11:00:05 AM

Project in English units

PLAN DATA

Plan Title: Main2 Existing

Plan File: f:\Projects\800\840-050\Division\Fctl\Calcs\HEC-RAS\02-Main2\EXISTINGSOUTHWASH.P01

Geometry Title: Main2 Existing

Geometry File : f:\Projects\800\840-050\Division\Fctl\Calcs\HEC-RAS\02-

Main2\EXISTINGSOUTHWASH.G01

: Main2 Existing Flow Title

Flow File : f:\Projects\800\840-050\Division\Fctl\Calcs\HEC-RAS\02-

= 0.001

Main2\EXISTINGSOUTHWASH.F01

Plan Summary Information:

Number of: Cross Sections = 6 Multiple Openings = 0 Culverts = 0 Inline Structures = Bridges = 0 Lateral Structures = 0

Computational Information

Water surface calculation tolerance = 0.01 Critical depth calculation tolerance = 0.01 Maximum number of iterations = 20Maximum difference tolerance = 0.3Flow tolerance factor

Computation Options

Critical depth computed at all cross sections

Conveyance Calculation Method: At breaks in n values only

Friction Slope Method: Average Conveyance

Computational Flow Regime: Mixed Flow

FLOW DATA

Flow Title: Main2 Existing

Flow File: f:\Projects\800\840-050\Division\Fctl\Calcs\HEC-RAS\02-Main2\EXISTINGSOUTHWASH.F01

Flow Data (cfs)

Reach PF 1 5400 Unnamed Lateral Lateral 1 1912 Boundary Conditions

River

Reach Profile

Upstream

Downstream

Unnamed Lateral Lateral 1 PF 1 0.011

Critical

Normal S =

GEOMETRY DATA

Geometry Title: Main2 Existing

Geometry File : f:\Projects\800\840-050\Division\Fctl\Calcs\HEC-RAS\02-

Main2\EXISTINGSOUTHWASH.G01

CROSS SECTION

RIVER: Unnamed Lateral

REACH: Lateral 1

RS: 5400

INPUT

Descripti	on:

Station El	evation	Data	num=	31					
Sta	Elev	Sta	Elev	Sta	Elev	Sta	Elev	Sta	Elev
0	2787	2.95	2786	6.53	2785	38.23	2784	42.43	2784
54.94	2785	58.99	2786	63.69	2787	68.44	2788	75.94	2788
80.04	2787	83.41	2786	87.97	2785	100.26	2785	104.72	2786
134.14	2786	154.63	2786	158.25	2786	164.28	2785	169.88	2784
175.32	2783	181.95	2783	193.11	2783	197.84	2784	204.19	2784
237.35	2781	254.68	2780	258.39	2780	275	2780.8	293.68	2780.8
293.68	2787								

Manning's n Values num= 4
Sta n Val Sta n Val Sta n Val Sta n Val
0 .035 54.94 .03 237.35 .035 293.68 .035

Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan.

0 293.68 211 96 93.25 .1 .3

Blocked Obstructions num= 2

Sta L Sta R Elev Sta L Sta R Elev 169.88 197.84 2784 169.88 197.84 2782

CROSS SECTION

RIVER: Unnamed Lateral

REACH: Lateral 1 RS: 5300

Description:

Station Ele	evation	Data	num=	32					
Sta	Elev	Sta	Elev	Sta	Elev	Sta	Elev	Sta	Elev
0	2783	5.22	2782	10.85	2781	52.66	2781	56.83	2782
60.59	2783	64.22	2784	67.89	2785	71.65	2786	75.71	2787
79.72	2788	83.93	2789	89.08	2790	94.88	2791	108.85	2790
117.91	2789	120.88	2789	131.44	2789	136.09	2788	140.07	2787
143.78	2786	147.88	2785	154.19	2784	198.1	2782	205.69	2781
212	2780	213.74	2779	230.55	2778	231.24	2778	246.2	2779
267.09	2779	267.09	2785						

Manning's n Values num= Sta n Val Sta n Val Sta n Val Sta n Val 0 .035 56.83 .03 212 .035 267.09 .035

Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan. 0 267.09 181.6 103 49.77 .1 .3

Blocked Obstructions Sta L Sta R Ele		2 Sta R	Elev			
0 60.59 278	3 0	60.59	2780			
CROSS SECTION						
RIVER: Unnamed Lateral REACH: Lateral 1	RS: 520	0				
INPUT Description: Station Elevation Data	num=	36				
Sta Elev St		Sta	Elev	Sta	Elev Sta	Elev
0 2778 6.3		64.02	2777	65.52	2778 78.35	2779
102.26 2779 110.9 119.81 2773 120.2		112.68 120.68	2776 2771	118.85 121.1	2775 119.4 2770 121.53	2774 2769
121.99 2768 123.7		127.96	2766		2765 160.08	2764
171.08 2764 171.5		172.09	2766		2767 172.89	2768
173.22 2769 173.5		174.17	2772		2773 174.77	2774
175.81 2775 186. 246.61 2777	5 2776	209.86	2777	217.39	2777 238.13	2777
Manning's n Values	num=	3				
Sta n Val St 0 .035 78.3		Sta 102.26	n Val .035			
Bank Sta: Left Right 0 246.61		: Left C	hannel 101.18	Right 99.54	Coeff Contr.	Expan.
CROSS SECTION						
RIVER: Unnamed Lateral						
REACH: Lateral 1	RS: 510	0				
INPUT						
Description:						
Station Elevation Data Sta Elev St	num= a Elev	47 Sta	Elev	Sta	Elev Sta	Elev
0 2778.55 6.0		7.94	2775	9.49	2774 23.17	2774
71.71 2775 74.3		93.06		109.68	2773 110.14	2772
110.57 2771 110.9		111.35	2769	114.85	2768 119.16	2767
123.19 2766 126.7		130.16	2764	134.46	2762 136.12	2761
140.9 2760 144.3 161.59 2759 164.2		148.44 169.63	2761 2760	150.35 173.1	2761 154.69 2761 175.15	2760 2762
176.7 2763 199.0		199.21	2765		2766 199.53	2767
199.62 2768 199.7	9 2769	199.92	2770	200.06	2771 200.4	2772
205.81 2773 212. 263.63 2774 263.6		215.84	2775	241.01	2775 245.76	2774
	num=	3				
	a n Val					
	4 .03		.035		gg years an E	
Bank Sta: Left Right 0 263.63	Lengths	49.87		Right 49.68	Coeff Contr.	Expan.
CROSS SECTION						
RIVER: Unnamed Lateral						
REACH: Lateral 1	RS: 500	00				
INPUT						
Description:	7117	2.0				
Station Elevation Data Sta Elev St	num= a Elev	38 Sta	Elev	Sta	Elev Sta	Elev
0 2776 . 12.97 2773 63.6				4.37 128.27		2773
131.75 2770 132.3	3 2769	132.94	2768	133.52	2767 134.1	2766

134.69 2765 135.28 137.58 2760 139.32 169.28 2760 173.97 208.68 2766 209.01 217.27 2772 267.37	2764 135.86 2763 2759 141.34 2758 2761 194.87 2762 2767 209.33 2768 2773 267.37 2776	136.47 2762 137.01 2761 156.37 2758 161.79 2759 206.23 2762 208.36 2765 209.62 2769 210.13 2771
Manning's n Values Sta n Val Sta 0 .035 0	num= 3 n Val Sta n Val .035 267.37 .035	
Bank Sta: Left Right 0 267.37	Lengths: Left Channel 99.31 100.71	Right Coeff Contr. Expan. 99.87 .1 .3
CROSS SECTION		
RIVER: Unnamed Lateral REACH: Lateral 1	RS: 4900	
INPUT		
Description:		
Station Elevation Data	num= 37	
Sta Elev Sta	Elev Sta Elev	Sta Elev Sta Elev
0 2771 22.9	2771 44.41 2770	56.5 2770 80.02 2770
110.42 2769 112.53 113.62 2764 117.02	2768 112.7 2767 2763 118.49 2762	112.95 2766 113.16 2765 119.53 2761 120.36 2760
113.62 2764 117.02 121.19 2759 122.01	2758 122.82 2757	124.21 2756 141.49 2756
146.47 2757 149.64	2758 159.38 2759	174.05 2759 183.11 2759
183.46 2760 183.75	2761 184.03 2762	184.31 2763 184.65 2764
184.94 2765 185.27	2766 185.58 2767	185.84 2768 190.13 2769
226.92 2770 236.19	2771	
Manning's n Values	num= 3	
Sta n Val Sta	n Val Sta n Val	
0 .035 0	.035 236.19 .035	
Bank Sta: Left Right 0 236.19	Coeff Contr. Expan.	

SUMMARY OF MANNING'S N VALUES

River:Unnamed Lateral

14
.035
.035

SUMMARY OF REACH LENGTHS

River: Unnamed Lateral

Reach	River Sta.	Left	Channel	Right
Lateral 1	5400	211	96	93.25
Lateral 1	5300	181.6	103	49.77
Lateral 1	5200	101.72	101.18	99.54
Lateral 1	5100	49.87	50.66	49.68
Lateral 1	5000	99.31	100.71	99.87
Lateral 1	4900			

SUMMARY OF CONTRACTION AND EXPANSION COEFFICIENTS

River: Unnamed Lateral

Reach	River Sta.	Contr.	Expan.
Lateral 1 Lateral 1	5400 5300	.1	.3
Lateral 1	5200	.1	.3
Lateral 1 Lateral 1	5100 5000	.1 .1	.3
Lateral 1	4900	.1	.3

ERRORS WARNINGS AND NOTES

Errors Warnings and Notes for Plan : 2

River: Unnamed Lateral Reach: Lateral 1 RS: 5400 Profile: PF 1

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth

for the water surface and continued on with the calculations.

Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate

the need for additional cross sections.

Warning:During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated

water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The $\,$

program defaulted to critical depth.

River: Unnamed Lateral Reach: Lateral 1 RS: 5300 Profile: PF 1

Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate

the need for additional cross sections.

River: Unnamed Lateral Reach: Lateral 1 RS: 5200 Profile: PF 1

Warning: The velocity head has changed by more than $0.5~{\rm ft}~(0.15~{\rm m})$. This may indicate the need for additional cross sections.

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4.

This may indicate the need for additional cross sections.

Warning: The energy loss was greater than 1.0 ft $(0.3\ m)$. between the current and previous cross section. This may indicate

the need for additional cross sections.

River: Unnamed Lateral Reach: Lateral 1 RS: 5100 Profile: PF 1

Warning: The velocity head has changed by more than $0.5~{\rm ft}~(0.15~{\rm m})$. This may indicate the need for additional cross sections.

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4.

This may indicate the need for additional cross sections.

Warning: The energy loss was greater than 1.0 ft $(0.3\ m)$. between the current and previous cross section. This may indicate

the need for additional cross sections.

River: Unnamed Lateral Reach: Lateral 1 RS: 5000 Profile: PF 1

Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections.

Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate

the need for additional cross sections.

River: Unnamed Lateral Reach: Lateral 1 RS: 4900 Profile: PF 1

Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections.

Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate

the need for additional cross sections.

HEC-RAS Plan: 2 River: Unnamed Lateral Reach: Lateral 1 Profile: PF 1

044-011	TEC-RAS Plan. Z. Rivel. Unitamed Lateral Reach. Lateral	Unitallied Late	elal Reacil. L	-	Frome: FF 1							
Reach	Reach River Sta		Profile Q Total Min Ch El	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Fronde # Chl
			(cfs)	(ff)	(#)	(#)	(#)	(#/#)	(ft/s)	(sd ft)	(ff)	
Lateral 1	5400	PF1	1912.00						9.02		85.33	1.01
Lateral 1	5300	PF1	1912.00	2778.00	2781.81	2782.08	2783.54	0.015582		181.43	67.57	1.13
	5200	PF 1	1912.00						2		46.38	3.99
Lateral 1	5100	PF1	1912.00						16.44	116.28	44.34	1.79
Lateral 1	5000	PF 1	1912.00								70.25	1.48
Lateral 1	4900	PF 1	1912.00		2760.64					182.15	63.82	1.09

HEC-RAS ANALYSIS

PROPOSED CONDITIONS MAIN 1

HEC-RAS Version 4.1.0 Jan 2010 U.S. Army Corps of Engineers Hydrologic Engineering Center 609 Second Street Davis, California

X XXXXXX XXXX XXXX XX XXXX XXXXXXX XXXX XXX XXXX XXXXXX XXXX X X X X X X X X Х X X X X X X X X X X X X XXXXXX XXXX X X X X XXXXX

PROJECT DATA

Project Title: Main 1 - Proposed Condition

Project File : PROP3.prj

Run Date and Time: 3/2/2016 4:20:31 PM

Project in English units

PLAN DATA

Plan Title: Current model

Plan File: f:\Projects\800\840-050\Division\Fctl\Calcs\HEC-RAS\01-Main1\PROP3.P01

Geometry Title: Main 1 Proposed

Geometry File : f:\Projects\800\840-050\Division\Fctl\Calcs\HEC-RAS\01-

Main1\PROP3.G01

Flow Title : 0 Flow Profiles

Flow File : f:\Projects\800\840-050\Division\Fctl\Calcs\HEC-RAS\01-

Main1\PROP3.F01

Plan Summary Information:

Number of: Cross Sections = 4 Multiple Openings = 0

Culverts = 0 Inline Structures = 0 Bridges = 0 Lateral Structures = 0

Computational Information

Water surface calculation tolerance = 0.01Critical depth calculation tolerance = 0.01Maximum number of iterations = 20Maximum difference tolerance = 0.3Flow tolerance factor = 0.001

Computation Options

Critical depth computed at all cross sections

Conveyance Calculation Method: At breaks in n values only

Friction Slope Method: Average Conveyance Computational Flow Regime: Subcritical Flow

FLOW DATA

Flow Title: 0 Flow Profiles

Flow File: f:\Projects\800\840-050\Division\Fctl\Calcs\HEC-RAS\01-Main1\PROP3.F01

Flow Data (cfs)

 River
 Reach
 RS
 PF 1

 Unnamed Wash
 Main1-Prop
 2700
 2128

Boundary Conditions

Reach

Profile

Upstream

River Downstream

Unnamed Wash Main1-Prop 2752.49

PF 1

Critical

Known WS =

GEOMETRY DATA

Geometry Title: Main 1 Proposed

Geometry File : f:\Projects\800\840-050\Division\Fctl\Calcs\HEC-RAS\01-Main1\PROP3.G01

CROSS SECTION

RIVER: Unnamed Wash

REACH: Main1-Prop

RS: 2700

INPUT

Description:

Station	Elevation	Data	num=	32					
Sta	Elev	Sta	Elev	Sta	Elev	Sta	Elev	Sta	Elev
C	2769	4.32	2768	8.89	2767	14.12	2766	19.18	2765
24.32	2764	29.44	2763	34.62	2762	39.85	2761	45	2760
48.3	2759	51.08	2758	54.15	2757	58.29	2756	74.22	2756
77.45	2757	80.08	2758	90.95	2758	94.1	2757	95.07	2757
97.37	2758	99.58	2759	100.37	2760	101.18	2761	101.97	2762
103.09	2763	105.64	2764	108.63	2765	112.52	2766	116.09	2767
119.56	2768	127.49	2769						

Manning's	n Values		num=	3	
Sta	n Val	Sta	n Val	Sta	n Val
0	.035	0	.035	127.49	.035

Bank Sta: Left	Right	Lengths: Left	Channel	Right	Coeff Contr.	Expan.
0	127.49	95.75	98.69	107.97	.1	.3

CROSS SECTION

RIVER: Unnamed Wash

REACH: Main1-Prop RS: 2600

INPUT

Description:

Station E	levation	Data	num=	34					
Sta	Elev	Sta	Elev	Sta	Elev	Sta	Elev	Sta	Elev
0	2765	3.19	2764	6.31	2763	9.41	2762	12.03	2761
12.88	2760	13.83	2759	14.76	2758	15.74	2757	16.76	2756
17.69	2755	18.58	2754	22.83	2752	32.12	2752	37.82	2754
43.67	2755	52.8	2756	66.54	2757	66.62	2758	66.71	2759
68.82	2761	68.85	2761	70.78	2759	71.78	2758	72.75	2757
86.93	2757	90.38	2758	91.7	2759	92.96	2760	94.15	2761
99.48	2762	104.49	2763	110.14	2764	115.64	2765		
				*					

Manning's	n Values		num=	3	
Sta	n Val	Sta	n Val	Sta	n Val
0	.035	0	.035	115.64	.035

Bank Sta: Left	Right	Lengths: Left	Channel	Right	Coeff Contr.	Expan.
0	115.64	101.86	103.65	108.71	.1	.3

CROSS SECTION

RIVER: Unnamed Wash

RS: 2500 REACH: Main1-Prop

INPUT

Description:

a Elev
2756
2748
L 2755
2761
3 8 1

Manning's n Values num= 3
Sta n Val Sta n Val Sta n Val
0 .035 0 .035 104.45 .035

Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan.
0 104.45 108.74 100.43 96.31 .1 .3

CROSS SECTION

RIVER: Unnamed Wash
REACH: Main1-Prop RS: 2400

INPUT

INPUI									
Descript	ion:								
Station	Elevation	Data	num=	14					
Sta	Elev	Sta	Elev	Sta	Elev	Sta	Elev	Sta	Elev
0	2758	33	2739.36	55	2739.36	74	2749	90.83	2749
95.4	2751	98.61	2752	104.46	2754	109.02	2755	118.84	2756
121.79	2757	123.77	2758	126.1	2759	128.13	2759		

 Manning's n Values
 num=
 3

 Sta
 n Val
 Sta
 n Val
 Sta
 n Val

 0
 .035
 0
 .035
 128.13
 .035

Bank Sta: Left Right Coeff Contr. Expan.
0 128.13 .3 .5

SUMMARY OF MANNING'S N VALUES

River: Unnamed Wash

Reach	River	Sta. n1	n2	n3
Main1-Prop	2700		.035 .035	.035
Main1-Prop	2600		.035 .035	.035
Main1-Prop	2500	Į.	.035 .035	.035
Main1-Prop	2400		.035 .035	.035

SUMMARY OF REACH LENGTHS

River: Unnamed Wash

Reach	River Sta.	Left	Channel	Right
Main1-Prop	2700	95.75	98.69	107.97
Main1-Prop	2600	101.86	103.65	108.71
Main1-Prop	2500	108.74	100.43	96.31
Main1-Prop	2400			

River: Unnamed Wash

Reach	River	Sta. Contr	. Expan.
Main1-Prop	2700	.1	.3
Main1-Prop	2600	.1	.3
Main1-Prop	2500	.1	.3
Main1-Prop	2400	.3	.5

ERRORS WARNINGS AND NOTES

Errors Warnings and Notes for Plan : Current mode

River: Unnamed Wash Reach: Main1-Prop RS: 2700 Profile: PF 1

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth

for the water surface and continued on with the calculations.

Warning: The energy loss was greater than 1.0 ft $(0.3\ m)$. between the current and previous cross section. This may indicate

the need for additional cross sections.

Warning:During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated

water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The

program defaulted to critical depth.
River: Unnamed Wash Reach: Main1-Prop RS: 2600 Profile: PF 1

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth

for the water surface and continued on with the calculations.

Warning: Divided flow computed for this cross-section.

Warning: The energy loss was greater than 1.0 ft $(0.3\ m)$. between the current and previous cross section. This may indicate

the need for additional cross sections.

 ${\tt Warning:During~the~standard~step~iterations,~when~the~assumed~water~surface~was~set~equal} \\$

water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The

program defaulted to critical depth.

River: Unnamed Wash Reach: Main1-Prop RS: 2500 Profile: PF 1

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth

for the water surface and continued on with the calculations.

Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections.

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4.

This may indicate the need for additional cross sections.

Warning: The energy loss was greater than 1.0 ft $(0.3\ m)$. between the current and previous cross section. This may indicate

the need for additional cross sections.

Warning:During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated

water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The

program defaulted to critical depth.

HEC-RAS Plan	: Current mode	 River: Unnar. 	HEC-RAS Plan: Current mode River: Unnamed Wash Reach	ach: Main1-Prop	Profile: PF 1	_						
Reach	Reach River Sta	Profile Q Total	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
			(cfs)	(H)	(#)	(#)	(#)	(flvft)	(ft/s)	(sd ft)	(L)	
Main1-Prop	2700	PF 1	2128.00	2756.00	2760.90	2760.90	2762.59	0.012742	10.45	203.62	60.71	1.01
Main1-Prop	2600	PF 1	2128.00	2752.00	2758.31	2758.31	2759.83	0.013626	9.89	215.14	71.49	1.00
Main1-Prop	2500	PF 1	2128.00	2748.00	2754.39	2754.39	2755.99	0.013172	10.14	209.83	66.45	1.01
Main1-Prop	p 2400	PF 1	2128.00	2739.36	2752.49	2744.95	2752.65	0.000417	3.16	672.99	90.29	0.20

HEC-RAS ANALYSIS

PROPOSED CONDITIONS MAIN 2

HEC-RAS Version 4.1.0 Jan 2010 U.S. Army Corps of Engineers Hydrologic Engineering Center 609 Second Street Davis, California

X	Х	XXXXXX	XX	XX		XX	XX	X	X	XXXX
X	X	X	X	X		X	X	X	X	X
X	X	X	X			X	X	X	X	X
XXXX	XXXX	XXXX	X		XXX	XX	XX	XXX	XXX	XXXX
X	X	X	X			X	X	X	X	X
X	X	X	X	X		X	X	X	X	X
X	X	XXXXXX	XX	XX		X	X	X	X	XXXXX

PROJECT DATA

Project Title: Main 2 - Proposed Condition Project File : PROPOSEDSOUTHWASH.prj

Run Date and Time: 3/3/2016 9:32:32 AM

Project in English units

PLAN DATA

Plan Title: Main 2

Plan File : f:\Projects\800\840-050\Division\Fctl\Calcs\HEC-RAS\02-Main2\PROPOSEDSOUTHWASH.P01

Geometry Title: Main 2

Geometry File : f:\Projects\800\840-050\Division\Fctl\Calcs\HEC-RAS\02-

Main2\PROPOSEDSOUTHWASH.G01

Flow Title

: Main 2
: f:\Projects\800\840-050\Division\Fctl\Calcs\HEC-RAS\02-Flow File

Main2\PROPOSEDSOUTHWASH.F01

Plan Summary Information:

Cross Sections = 5 Multiple Openings = Culverts = 0 Inline Structures = Number of: Cross Sections = 0 0

= 0 Lateral Structures = Bridges

Computational Information

Water surface calculation tolerance = 0.01 Critical depth calculation tolerance = 0.01 Maximum number of iterations = 20 Maximum difference tolerance = 0.3

Flow tolerance factor = 0.001

Computation Options

Critical depth computed at all cross sections

Conveyance Calculation Method: At breaks in n values only

Friction Slope Method: Average Conveyance Computational Flow Regime: Mixed Flow

FLOW DATA

Flow Title: Main 2

Flow File: f:\Projects\800\840-050\Division\Fctl\Calcs\HEC-RAS\02-Main2\PROPOSEDSOUTHWASH.F01

Flow Data (cfs)

PF 1 River Reach RS Unnamed Lateral Lateral 1 5400 1910

Boundary Conditions

Reach Profile

Upstream

Downstream

Unnamed Lateral Lateral 1 PF 1 2771.09

Critical

Known WS =

GEOMETRY DATA

Geometry Title: Main 2

Geometry File: f:\Projects\800\840-050\Division\Fctl\Calcs\HEC-RAS\02-

Main2\PROPOSEDSOUTHWASH.G01

CROSS SECTION

RIVER: Unnamed Lateral

REACH: Lateral 1

RS: 5400

INPUT

Description:

Station Ele	evation	Data	num=	31					
Sta	Elev	Sta	Elev	Sta	Elev	Sta	Elev	Sta	Elev
0	2787	2.95	2786	6.53	2785	38.23	2784	42.43	2784
54.94	2785	58.99	2786	63.69	2787	68.44	2788	75.94	2788
80.04	2787	83.41	2786	87.97	2785	100.26	2785	104.72	2786
134.14	2786	154.63	2786	158.25	2786	164.28	2785	169.88	2784
175.32	2783	181.95	2783	193.11	2783	197.84	2784	204.19	2784
237.35	2781	254.68	2780	258.39	2780	275	2780.8	293.68	2780.8
293.68	2787								

Manning's n Values num= 3
Sta n Val Sta n Val Sta n Val
0 .035 54.94 .03 237.35 .035

Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan. 0 293.68 211 96 93.25 .1 .3 Blocked Obstructions num= 2
 Sta L
 Sta R
 Elev
 Sta L
 Sta R
 Elev

 169.88
 197.84
 2784
 169.88
 197.84
 2782

CROSS SECTION

RIVER: Unnamed Lateral

REACH: Lateral 1 RS: 5300

INPUT

escription

Description	1:								
Station Ele	evation	Data	num=	32					
Sta	Elev	Sta	Elev	Sta	Elev	Sta	Elev	Sta	Elev
0	2783	5.22	2782	10.85	2781	52.66	2781	56.83	2782
60.59	2783	64.22	2784	67.89	2785	71.65	2786	75.71	2787
79.72	2788	83.93	2789	89.08	2790	94.88	2791	108.85	2790
117.91	2789	120.88	2789	131.44	2789	136.09	2788	140.07	2787
143.78	2786	147.88	2785	154.19	2784	198.1	2782	205.69	2781
212	2780	213.74	2779	230.55	2778	231.24	2778	246.2	2779
267.09	2779	267.09	2785						

Manning's n Values num= 3
 Sta
 n Val
 Sta
 n Val
 Sta
 n Val

 0
 .035
 56.83
 .03
 212
 .035

Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan. 0 267.09 181.6 103 49.77 .1 .3 .1 .3

Blocked Obstructions Sta L Sta R Elev 0 60.71 2783	num= 2 Sta L Sta R 0 60.71	Elev 2780		
CROSS SECTION				
RIVER: Unnamed Lateral REACH: Lateral 1	RS: 5200			
INPUT Description: Station Elevation Data Sta Elev Sta 0 2778 .01	num= 25 Elev Sta 2778 6.64	Elev St. 2777 64.2		Elev 2778
78.35 2779 102.26 121.87 2774 126.21 173.68 2774 176.47	2779 109.54 2773 140.34 2775 179.06 2777 243.02	2778 111.2 2772 167.6 2776 189.9 2777 246.6	1 2777 112.94 7 2772 170.61 8 2777 210.1	2776 2773 2777 2780
Manning's n Values	num= 6			
Sta n Val Sta 0 .035 65.78 246.61 .035	n Val Sta .03 109.54	n Val St.		n Val .035
Bank Sta: Left Right 0 246.61	Server Se	annel Right 01.18 99.54		Expan.
CROSS SECTION				
RIVER: Unnamed Lateral REACH: Lateral 1	RS: 5100			
INPUT Description: Station Elevation Data Sta Elev Sta 0 2778.55 5.55 56.32 2772 71.95 117.08 2767 128.49 183.7 2765 186.61 197.58 2770 200.46 215.87 2775 241.04 263.63 2780	num= 31 Elev Sta 2776 7.72 2771 86.42 2766 139.73 2766 189.33 2771 203 2775 245.71	Elev St 2775 28.2 2770 96.5 2765 153.9 2767 191.3 2772 206.0 2774 257.5	4 2774 43.78 7 2769 104.89 7 2764 179.84 6 2768 194.16 1 2773 211.83	Elev 2773 2768 2764 2769 2774
Manning's n Values Sta n Val Sta 0 .035 56.32	num= 4 n Val Sta .04 203	n Val St		
Bank Sta: Left Right 0 263.63	Lengths: Left Ch 49.87	annel Right 50.66 49.68		Expan.
CROSS SECTION				
RIVER: Unnamed Lateral REACH: Lateral 1	RS: 5000			
INPUT Description: Station Elevation Data Sta Elev Sta 0 2776 1.02 70.53 2772 92.22 127.31 2767 130.63 149.02 2762 153.27 185.81 2762 191.56	num= 33 Elev Sta 2776 3.79 2771 110.68 2766 133.74 2761 157.12 2 2763 195.69	Elev St 2775 32.7 2770 116.8 2765 136. 2759.39 177.1 2764 199.2	5 2774 53.22 3 2769 121.85 6 2764 143.25 4 2759.39 181.95	Elev 2773 2768 2763 2761 2766
205.46 2767 208.48 223.48 2772 267.37	2763 193.69 2768 211.28 2772 267.37	2764 133.2 2769 214.1 2776		2771

Manning's n Values num= 3
Sta n Val Sta n Val Sta n Val
0 .035 70.53 .04 223.48 .035

Bank Sta: Left Right Coeff Contr. Expan. .3

0 267.37

SUMMARY OF MANNING'S N VALUES

River: Unnamed Lateral

Reach	River Sta.	n1	n2	n3	n4	n5	n6
Lateral 1	5400	.035	.03	.035			
Lateral 1	5300	.035	.03	.035			
Lateral 1	5200	.035	.03	.035	.04	.035	.035
Lateral 1	5100	.035	.04	.035	.035		
Lateral 1	5000	.035	.04	.035			

SUMMARY OF REACH LENGTHS

River: Unnamed Lateral

Reach	River Sta.	Left	Channel	Right
Lateral 1	5400	211	96	93.25
Lateral 1	5300	181.6	103	49.77
Lateral 1	5200	101.72	101.18	99.54
Lateral 1	5100	49.87	50.66	49.68
Lateral 1	5000			

SUMMARY OF CONTRACTION AND EXPANSION COEFFICIENTS

River: Unnamed Lateral

Reach	River Sta.	Contr.	Expan
Lateral 1	5400	.1	.3
Lateral 1	5300	.1	.3
Lateral 1	5200	.1	.3
Lateral 1	5100	.1	.3
Lateral 1	5000	.3	.5

ERRORS WARNINGS AND NOTES

Errors Warnings and Notes for Plan : Current mode

River: Unnamed Lateral Reach: Lateral 1 RS: 5300 Profile: PF 1

Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate

the need for additional cross sections.

River: Unnamed Lateral Reach: Lateral 1 RS: 5200 Profile: PF 1

Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections.

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4.

This may indicate the need for additional cross sections.

Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate

the need for additional cross sections.

Note: Manning's n values were composited to a single value in the main channel.

RS: 5100 River: Unnamed Lateral Reach: Lateral 1 Profile: PF 1 Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4.

This may indicate the need for additional cross sections.

Note: Hydraulic jump has occurred between this cross section and the previous upstream section.

HEC-RAS Plan: Current mode River: Unnamed Lateral Reach: Lateral 1 Profile: PF 1

し りなとう ロロ	Ian. Cullenn	JEC-RAS Piail. Cullell Illoue Rivel. Cillialiled Lateral Reach. Lateral	IIIaiiieu Laieia	II NEAGII. LAIG	Ial Floile. FI							
Reach	Reach River Sta Profile	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
			(cfs)	(ft)	(ft)	(#)	(ft)	(fVft)	(ft/s)	(sd ft)	(ff)	
Lateral 1	5400	PF 1	1910.00		2783.62		2784.89	0.012079	9.02		85.32	1.01
Lateral 1	5300	PF 1	1910.00	2778.00	2781.81	2782.08	2783.53		10.53	181.35	67.56	1.13
Lateral 1	5200	PF 1	1910.00		2774.34		2779.78		18.71		54.29	2.40
Lateral 1	5100	PF 1	1910.00		2771.06		2771.25		3.44		129.63	0.29
Lateral 1	5000	PF 1	1910.00	2759.39	2771.09	2764.36	2771.19	0.000416	2.48	771.61	127.62	0.18

PR		E 2 DROP INLET W/ 18" SILITY #2	RCP	
	TAC	JILII I #2		7
	WEIR		ORIFICE	
Q100 =	1	Q100 =	1	
L =	8.69	CLEAR AREA =	3.5	
		C =	0.65	
CLOGGING FACTOR	50%	CLOGGING FACTOR _	50%	
ASSUME H1 = C (FOR H1) =	0.19 2.7	ASSUME H1 =	0.19	
$Q_{F} = CL(H)^{3/2}$	1.0	Q = CA(64.4 H)1/2	6.1	
	CONTROL = Q INT =	WEIR 1.0	s for the 3-inch thickness of th	

57B-1A: 48-inch RCP

INPUT			INLET	
Pipe Diameter	48	in	Thin Edge 3.41	ft
Number of Pipes	1		Sq. Edge 3.16	ft
Length	355.0	ft	Beveled 3.03	ft
Slope	6.13	%	Tapered 3.27	ft.
Manning's 'n'	0.013		OUTLET	
Flow "Q"	54	cfs	Head Water N/A	ft
Entrance Coef.	0.35		Critical 2.21	ft
Tail Water	0	ft	Velocity 4.30	ft/s

DON1: 48-INCH RCP

INPUT			INLET		
Pipe Diameter	48	in	Thin Edge	2.53	ft
Number of Pipes	1		Sq. Edge	2.39	ft
Length	30.0	ft	Beveled	2.34	ft
Slope	3.57	%	Tapered	2.53	ft.
Manning's 'n'	0.013		OUTLET		
Flow "Q"	34	cfs	Head Water	N/A	ft
Entrance Coef.	0.35		Critical	1.73	ft
Tail Water	0	ft	Velocity	2.71	ft/s

DON2: 48-inch RCP

INPUT			INLET		
Pipe Diameter	48	in	Thin Edge	3.73	ft
Number of Pipes	1		Sq. Edge	3.45	ft
Length	30.0	ft	Beveled	3.29	ft
Slope	3.57	%	Tapered	3.46	ft.
Manning's 'n'	0.013		OUTLET		
Flow "Q"	60	cfs	Head Water	N/A	ft
Entrance Coef.	0.35		Critical	2.33	ft
Tail Water	0	ft	Velocity	4.77	ft/s

1/4 DON3: 24-INCH RCP

INPUT		w.	INLET		
Pipe Diameter	24	in	Thin Edge	2.58	ft
Number of Pipes	1		Sq. Edge	2.37	ft
Length	127.0	ft	Beveled	2.20	ft
Slope	0.30	%	Tapered	2.20	ft.
Manning's 'n'	0.013		OUTLET		
Flow "Q"	16	cfs	Head Water	2.52	ft
Entrance Coef.	0.35		Critical	1.44	ft
Tail Water	0	ft	Velocity	5.09	ft/s

DON3: 48-INCH RCP

INPUT			INLET		
Pipe Diameter	48	in	Thin Edge	2.52	ft
Number of Pipes	1		Sq. Edge	2.38	ft
Length	30.0	ft	Beveled	2.33	ft
Slope	2.00	%	Tapered	2.48	ft.
Manning's 'n'	0.013		OUTLET		
Flow "Q"	33	cfs	Head Water	N/A	ft
Entrance Coef.	0.35		Critical	1.71	ft
Tail Water	0	ft	Velocity	2.63	ft/s

DON3: 48-INCH RCP

INPUT			INLET	
Pipe Diameter	48	in	Thin Edge 2.76	ft
Number of Pipes	1		Sq. Edge 2.59	ft
Length	30.0	ft	Beveled 2.52	ft
Slope	2.00	%	Tapered 2.69	ft.
Manning's 'n'	0.013		OUTLET	
Flow "Q"	38	cfs	Head Water N/A	ft
Entrance Coef.	0.35		Critical 1.84	ft
Tail Water	0	ft	Velocity 3.02	ft/s

DON4

INPUT			INLET		
Pipe Diameter	36	in	Thin Edge	2.32	ft
Number of Pipes	1		Sq. Edge	2.17	ft
Length	30.0	ft	Beveled	2.09	ft
Slope	2.00	%	Tapered	2.22	ft.
Manning's 'n'	0.013		OUTLET		
Flow "Q"	22	cfs	Head Water	N/A	ft
Entrance Coef.	0.35		Critical	1.51	ft
Tail Water	0	ft	Velocity	3.11	ft/s

PIPE CULVERT

CON3R: 72-inch RCP

INPUT			INLET		
Pipe Diameter	72	in	Thin Edge	6.29	ft
Number of Pipes	1		Sq. Edge	5.81	ft
Length	115.7	ft	Beveled	5.50	ft
Slope	1.00	%	Tapered	5.63	ft.
Manning's 'n'	0.013		OUTLET		
Flow "Q"	191	cfs	Head Water	4.92	ft
Entrance Coef.	0.35		Critical	3.77	ft
Tail Water	0	ft	Velocity	6.76	ft/s

G. C. WALLACE COMPANIES ENGINEERS | PLANNERS | SURVEYORS

BOX CULVERT

CCON10_20x9RCB

INPUT			INLET		
Width of Box	20.00	ft	45d WWall	12.08	ft
Height of Box	9.00	ft	Sq. Edge	12.72	ft
Number of Barrels	1		Beveled	11.71	ft
Length	50.00	ft	Tapered	58.70	ft
Slope	0.99	%	OUTLET		
Manning's 'n'	0.015		Head Water	10.62	ft
Flow "Q"	2128	cfs	Critical	7.06	ft
Entrance Coef.	0.05		Velocity	11.82	ft/s
Littlance Oder.	0.35		velocity	11.02	11/5

Non Standard Box Span

G. C. WALLACE COMPANIES ENGINEERS | PLANNERS | SURVEYORS

PIPE CULVERT

CON15R: 72-inch RCP

INPUT					
Pipe Diameter	72	in	Thin Edge	11.39	ft
Number of Pipes	1		Sq. Edge	9.88	ft
Length	92.9	ft	Beveled	8.85	ft
Slope	1.14	%	Tapered	8.27	ft.
Manning's 'n'	0.013		OUTLET		
Flow "Q"	344	cfs	Head Water	8.17	ft
Entrance Coef.	0.35		Critical	5.03	ft
Tail Water	0	ft	Velocity	12.17	ft/s

G, C. WALLACE COMPANIES ENGINEERS | PLANNERS | SURVEYORS

BOX CULVERT

CON18R_20x9RCB

INPUT			INLET		
Width of Box	20.00	ft	45d WWall 1	0.26	ft
Height of Box	9.00	ft	Sq. Edge 1	0.85	ft
Number of Barrels	1		Beveled	9.92	ft
Length	18.23	ft	Tapered 4	2.32	ft
Slope	9.59	%	OUTLET		
Manning's 'n'	0.015			8.44	ft
Flow "Q"	1910	cfs	Critical	6.57	ft
Entrance Coef.	0.35		Velocity 1	0.61	ft/s
Tail Water	0	ft	3 3 3		

Non Standard Box Span

G. C. WALLACE COMPANIES ENGINEERS | PLANNERS | SURVEYORS

PIPE CULVERT

ON16R: 48-inch RCP

INPUT			INLET	
Pipe Diameter	48	in	Thin Edge 2.04	ft
Number of Pipes	1		Sq. Edge 1.96	ft
Length	96.1	ft	Beveled 1.93	ft
Slope	0.50	%	Tapered 2.03	ft.
Manning's 'n'	0.013		OUTLET	
Flow "Q"	23	cfs	Head Water N/A	ft
Entrance Coef.	0.35		Critical 1.41	ft
Tail Water	0	ft	Velocity 1.83	ft/s

G. C. WALLACE COMPANIES ENGINEERS | PLANNERS | SURVEYORS

BOX CULVERT

CON22: Existing (2)12x12RCB

INPUT			INLET	
Width of Box	12.00	ft	45d WWall 17.07	ft
Height of Box	12.00	ft	Sq. Edge 18.08	ft ←
Number of Barrels	2		Beveled 16.49	ft
Length	100.00	ft	Tapered 15.40	ft
Slope	1.00	%	OUTLET	
Manning's 'n'	0.013		Head Water 14.78	ft
Flow "Q"	4209	cfs	Critical 12.00	ft
Entrance Coef.	0.35		Velocity 14.61	ft/s
Tail Water	0	ft	. No	

G. C. WALLACE COMPANIES
ENGINEERS | PLANNERS | SURVEYORS

1NV = 2666.75 18.08 2684.83 WSE

depth to top of pipe, not invert

american oncrete ipo association

CONCRETE PIPE SELECTION: Trench Installations

Trench conduits are usually installed in relatively narrow trenches excavated in undisturbed soil and back-filled to the original ground surface.

When a rigid conduit is installed in a narrow trench and backfilled, the backfill material will tend to settle. This downward movement generates frictional forces along the trench walls, which act upward to help support the weight of the backfill material. The magnitude of the frictional forces depends on the unit weight of the backfill material w, the value of Rankine's tateral pressure ratio K, and the coefficient of sliding friction μ between the backfill material and the trench walls.

The backfill load on a conduit installed in a trench condition is equal to the weight of the mass of fill material within the trench less the summation of the frictional load transfers, and is expressed by the equation:

Wa=Caw Ba

where

.

1

W_d=backfill load, pounds per linear foot C_d=load coefficient for trench condition w=unit weight of backfill material, pounds per cubic foot

B_d=width of trench at the top of the conduit, feet

Figures 2 through 5, based on the above equation, enable a direct determination of backfill load for a given trench width and depth of cover. As the trench width increases for a given depth of cover and pipe diameter, a point is reached at which an embankment condition develops. The curves showing pipe size indicate the limiting trench width for each pipe diameter beyond which greater trench widths will not affect the load. When this condition occurs, the load on the conduit remains constant. This load should be determined by the intersection of the vertical line representing the depth of cover and the dashed line representing the particular pipe diameter under consideration. For intermediate pipe sizes not shown in Figures 2 through 5, interpolation should be used.

The field supporting strength of a concrete pipe line is dependent on the inherent strength of the pipe, the type of foundation on which the pipe is installed and the compaction of the sidefill material adjacent to the pipe. A common method used to determine the inherent strength of a pipe is the three-edge bearing test, in which the pipe is subjected to concentrated loads at the crown and invert. The load that a pipe will support under this condition of loading is called the three-edge bearing strength and is expressed in pounds per linear toot.

ASTM Specification C14 covers three strength classes for non-reinforced concrete pipe — Class 1, 2 and 3. These three classes are specified to meet ultimate toads, expressed in terms of minimum strength in three-edge-bearing as listed in Table 1.

TABLE I: Strength Requirements Non-reinforced Concrete Pipe ASTM C14

Pipe Diameter,	Minimum Three-Edge Bearing Strengths, Pounds per Linear Fact						
***************************************	Class 1	Class 2	Class 3				
4 6 8 10 12 15 18 21 24 27 30 36	1500 1500 1500 1600 1800 2000 2200 2400 2600 2800 3000 3150 3300	2000 2000 2000 2000 2000 2250 2600 3000 3600 3600 3950 4300 4400	2400 2400 2400 2400 2500 2900 3300 3850 4400 4600 4750 4875 5000				

Another means of expressing pipe strength is in terms of D-load. The D-load of a pipe is the supporting strength of a pipe loaded under three-edge-bearing test conditions expressed in pounds per linear foot per foot of inside diameter. Thus the bearing strength may be converted to D-load by dividing by the inside diameter in feet.

ASTM Specification C76 specifies five strength classes reinforced concrete pipe. These strength classes are expressed in terms of D-load at 0.01-inch crack and for ultimate load. The D-load to produce the 0.01-inch crack D_{0.01} is the maximum load applied to the concrete pipe before a crack occurs having a width of 0.01-inch measured at close intervals, throughout a length of at least 1-loot. The D-load to produce ultimate load D_u is the maximum three-edge-bearing test load carried by a pipe, expressed as D-load. Table II lists 0.01-inch crack and ultimate D-loads for the strength classes covered by ASTM Specification C76.

TABLE II: Strength Requirements Reinforced
Concrete Pipe ASTM C76

Strength Clàss	Minimum D-Load in Three-Edge Bearing Pounds per Linear Foot per Foot of Internal Diameter				
	0.01 Inch Crock-Do.01	Ultimate-D _u			
→ !!!	800 1000 1350 2000 3000	1200 1500 2000 3000 3750			

Class II 0-1350 Class IV 1350-200 Class IV 2000-3000

1.25

INTERPOLATED

D-LOAD REQUIREMENTS FOR A 24 IN. DIAMETER CIRCULAR PIPE ******************************* PIPE DATA DIAMETER (in.) 3.000 WALL B, THICKNESS (in.) INSTALLATION CONDITIONS 1.00 MINIMUM DEPTH OF FILL (ft.) 20.00 MAXIMUM DEPTH OF FILL (ft.) 140.0 SOIL DENSITY (lb/cu. ft.) 1.90 SPECIFIED BEDDING FACTOR TRENCH INSTALLATION TYPE 6.50 TRENCH WIDTH (ft.) SOIL LATERAL PRESSURE/FRICTION TERM (KMU') 0.0165 PARAMETERS TO COMPUTE TRANSITION WIDTH 1.00 POSITIVE PROJECTION RATIO 0.50 POSITIVE SETTLEMENT RATIO SOIL LATERAL PRESSURE/FRICTION TERM (KMU) 0.1924 0.33 SOIL LATERAL PRESSURE COEFICIENT ADDITIONAL LOADS AASHTO HS-20 LIVE LOAD NO SURCHARGE LOAD FACTORS OF SAFETY FACTOR OF SAFETY ON 0.01 INCH CRACK D-LOAD (EARTH, LIVE) 1.00; 1.00 FACTOR OF SAFETY ON ULTIMATE LOAD (EARTH, LIVE) IN ACCORDANCE WITH ASTM C 76 1.5 DL.01 LESS THAN 2000 LBS/FT/FT

DL.01 GREATER THAN 3000 LBS/FT/FT

DL.01 BETWEEN 2000 AND 3000 LBS/FT/FT

ESULTS OF ANALYSIS

SSSSSSSS	AAAA	AAAA	MMM	MMM	MMM	()	MMI
SS	AA	AA	MM M	MM M	MM	M M	MM
SSSSSSSS	AAAA	AAAA	MM I	I MM	MM	M	MM
SS	AA	AA	MM	MM	MM		MM
SSSSSSSS	AA	AA	MM	MM	MM		MM

PROGRAM SAMM

AMERICAN CONCRETE PIPE ASSOCIATION VERSION 2.0 - 1 SEPTEMBER 1990

Program SAMM computes earth loads on concrete pipe in accordance with the methods presented in the Concrete Pipe Design Manual (March 1990) and the Concrete Pipe Handbook (January 1988), published by the American Concrete Pipe Association. The user must select input values suitable to his specific installation. The information presented in the computer output is for review, interpetation, application and approval by a qualified engineer who must assume full responsibility for verifying that said output is appropriate and correct. There are no express or implied warranties. The use of this product does not constitute endorsement by ACPA or any other agents.

ELPE DEPTH (ft.)	EARTH LOAD ARCHING >TRANS LOAD FACTOR (lb/ft)			ARCHING >TRANS LOAD LOAD LOAD LOAD				OTAL BED REQUIRED D- OAD FACT 0.01 in. U b/ft) (1b/ft/ft)			
			0.00	2000	0.	3386.	1.90	891.	1337.		
1.0	1.08	Y	378.	3008.			1.90	787	1181.		
1.5	1.12	Y	591.	2400.	0.	2991.	1.90	684.	1026.		
2.0	1.17	Y	820.	1781.	0.	2600.		615.	922-		
2.5	1.22	Y	1067.	1269.	0.	2336.	1.90		893.		
3.0	1.27	Y	1334.	927.	0.	2261.	1.90	595			
3.5	1.33	Y Y	1623.	763.	0.	2386.	1.90	628.	942.		
4.0	1.38	A	1935.	641.	0.	2575.	1.90	678.	1017.		
4.5	1.44	Y	2272.	546.	0.	2818.	1.90	742.	1112.		
5.0	1.46	A	2562.	472.	0.	3034.	1.90	798.	1197.		
A 5.5	1.47	Y.	2827.	412.	0.	3239.	1.90	852.	1278.		
€.0	1.47	Ÿ	3091.	363.	0.	3454.	1.90	909.	1363.		
6.5	1.47	Ÿ	3356.	322.	0.	3678.	1.90	968.	1452.		
7.0	1.48	v	3625.	288.	0	3913.	1.90	1030.	1545.		
	1.48	Ä	3889	260.	0.	4149.	1.90	1092.	1638.		
7.5		Y	4153.	235.	0.	4388.	1.90	1155.	1732.		
8.0	1.48		4417.	214.	0.	4631.	1.90	1219.	1828.		
8.5	1.48	Y		195.	ő.	4877.	1.90	1283.	1925.		
9.0	1.49	Ā.	4682.		0.	5125.	1.90	1349.	2023.		
9.5	1.49	Y	4946.	179.	0.	5375.	1.90	1414.	2122.		
10.0	1.49	Υ.	5210.	165.		5627.	1.90	1481.	2221.		
10.5	1.49	Y	5474.		.0.	5880.	1.90	1547.	2321.		
, 11.0	1.49	A	5738 -	141.	0.			1614.	2421-		
1.5	1.49	X.	6003.	131.	0.	6134.	1.90		2522.		
12.0	1.49	Y	6267.	122.	0.	6389.	1.90	1681.			
12.5	1.49	Y Y	6531.	1.14.	0.	6645.	1.90	1749.	2623.		
13.0	1.49	Y	6795.	107.	0.	6902.	1.90	1816.	2725.		
13.5	1.49	Y	7060.	100.	0.	7160.	1.90	1884.	2826.		

1

1							5 12 2		
14.0	1.49	Y	7324.	94.	0.	7418.	1.90	1952.	2928.
	1.50	Ÿ	7588.	89.	0.	7677.	1.90	2020.	3020.
14.5		Ŷ	7853.	84.	0.	7937.	1.90	2089.	3087.
15.0	1.50		8117.	79.	0.	8196.	1.90	2157.	3151.
15.5	1.50	Y		75.	0.	8444.	1.90	2222.	3210.
,6.0	1.49	Y	8369.		0.	8704.	1.90	2291.	3269.
16.5	1.49	Y	8633.	71.		8964.	1.90	2359.	3327.
17.0	1.50	Y	8897.	68.	0.		The Control of	2428.	3382.
A 17.5	1.50	Y	9160.	64.	0.	9225.	1.90		
18.0	1.50	Y	9424.	61.	0.	9485.	1.90	2496.	3435.
	1.50	Y	9688.	58.	0.	9746.	1.90	2565.	3485.
18.5	34400.000.000 B	Ŷ	9952.	56.	0.	10008.	1.90	2634.	3533.
19.0	1.50		. 5.3	53.	0.	10269.	1.90	2702.	3579.
19.5	1.50	Y	10216.		0.	10530.	1.90	2771.	3622.
20 0	1.50	V	10480.	51.	U .	702200	2.000	, , ,	717

DATE:

1 1

DESIGNER:

PAGE 2

PROGRAM SAMM-

PROGRAM SAMM	E
PROGRAM SAMM D-LOAD REQUIREMENTS FOR A 36 IN. DIAMETER CIRCULAR PIE	****
金典女会有政治大学女会大大学女子大大学女子大学女子大学女子大学女子大学女子大学女子	
	36.00
the state with the proof and byte above in a court part and with the part and with any was a court of the state of the sta	4.000
DIAMETER (in.) WALL B, THICKNESS (in.)	OR THEORY
INSTALLATION CONDITIONS	مست منحن بليد يولون ال وساء منحن منحن المدار بر إن يابلنا المنار منحن المدار
	1.00
WYNTHIN DEPTH OF FILL (1-1)	20.00
TO VICTOR DEPTH OF FILLS (144)	140.0
COTT DRUGTTY (ID/CU, IL.)	1,90
SPECIFIED_BEDDING FACTOR	TRENCH
TUSTALLATION TYPE	7,67
TRENCH WIDTH (ft.) SOIL LATERAL PRESSURE/FRICTION TERM (KMU') SOIL LATERAL PRESSURE/FRICTION WIDTH	0.1650
	w 00
WAS TRUBELL IN LUMBULE PLUMPER	1.00
PVGLELLE SUCTION 102770	0.50 0.1650
	0.33
The property of the property o	0.33
SOIL LATERAL PRESSURE COEFICIENT	
- A 1 D 2	سے سرمان ہے۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔
ADDITIONAL LOADS	AASHTO HS-20
Chiefe States with state that the man high receipt the chiefe chi	WWOUTO 112 To
LIVE LOAD NO SURCHARGE LOAD	
FACTORS OF SAFETY	سنة فيان بيس بيسه سنة وينا وين جمل وين سنة ويند هري سنة بعد ها.
FACTORS OF SAFETY	1.00
FACTOR OF SAFETY ON 0.01 INCH CRACK D-LOAD (EARTH, LIVE) FACTOR OF SAFETY ON ULTIMATE LOAD (EARTH, LIVE) IN ACCORDANCE FACTOR OF SAFETY ON ULTIMATE LOAD (EARTH, LIVE) IN ACCORDANCE	WITH ASTM C 76
	1.5
DL. 01 LESS THAN 2000 LBS/FT/FT	1.25
	INTERPOLATED
DL.01 GREATER THAN 3000 LBS/FT/FT DL.01 BETWEEN 2000 AND 3000 LBS/FT/FT	Property and the second
NT AT THE MAN AND A SECOND	

PAGE 3

PROGRAM SAMM-

R	E	S	U	L	T	S	0	F	A	N	A	L	A	S	I	5

SSSSSSSSS	AAAA		MMM	MMM	MMM		MMM
SS SSSSSSSSS	AA AAAAA	AA		M MM M MM	MM	H H	MM
SS	AA AA	AA	mm	MM	MM		MM

PROGRAM SAMM

AMERICAN CONCRETE PIPE ASSOCIATION VERSION 2.0 - 1 SEPTEMBER 1990

Program SAMM computes earth loads on concrete pipe in accordance with the methods presented in the concrete Pipe Design Manual (March 1990) and the Concrete Pipe Handbook (January 1988), published by the American Concrete Pipe Association. The user must select input values suitable to his specific installation. The information presented in the computer output is for review, interpetation, application and approval by a qualified engineer who must assume full responsibility for verifying that said output is appropriate and correct. There are no express or implied warranties. The use of this product does not constitute endorsement by ACPA or any other agents.

	-									
	PIPE DEPTH (ft.)	ARCHING FACTOR	RTH LOA >TRANS	IOAD (Ib/ft)	LIVE LOAD (lb/ft)	SURCH LOAD (lb/ft)	TOTAL LOAD (lb/ft)	FACT	EQUIRED 0.01 in. (1b/ft/1	. ULT. ?t)
I	1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0	1.05 1.10 1.15 1.20 1.26 1.33 1.39 1.43 1.43	X X X X X X X X X X X X X X X X X X X	537. 1125. 1768. 2472. 3241. 4084. 5006. 5871. 6630. 7387.	2814. 2326. 1227. 857. 637. 494. 395. 323. 270. 229.	0.	3351. 3450. 2995. 3329. 3878. 4577. 5400. 6194. 6899. 7616.	1.90 1.90 1.90 1.90 1.90 1.90 1.90 1.90	588. 605. 525. 584. 680. 803. 947. 1087. 1210. 1336.	882. 908. 788. 876. 1021. 1205. 1421. 1630. 1816. 2004.
TI DE	11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0	1.44 1.45 1.45 1.45 1.45 1.45 1.46 1.43	N A A A A	8154. 8911. 9668. 10424. 11181. 11937. 12693. 13446. 13930. 14394.	171. 150. 132. 118. 106. 95. 86. 79.	0.	9082. 9817. 10557. 11298. 12043. 12789. 13533. 14009. 14466.	1.90 1.90 1.90 1.90 1.90 1.90 1.90	1593. 1722. 1852. 1982. 2113. 2244. 2374. 2458. 2538.	2390. 2584. 2778. 2973. 3110. 3229. 3339. 3405.

DATE:

DESIGNER:

SSSSSSSS	AAAA	AAAA	MMM	î	MM	MMM	4	MMM
SS	AA	AA	MM	M M	MM	MM	M	MM M
SSSSSSSS	AAAA	AAAAA	MM	M	MM	MM	M	MM
SS	AA	AA	MM		MM	MM		MM
SSSSSSSS	AA	AA	MM		MM	MM		MM

PROGRAM SAMM

AMERICAN CONCRETE PIPE ASSOCIATION VERSION 2.0 - 1 SEPTEMBER 1990

Program SAMM computes earth loads on concrete pipe in accordance with the methods presented in the Concrete Pipe Design Manual (March 1990) and the Concrete Pipe Handbook (January 1988), published by the American Concrete Pipe Association. The user must select input values suitable to his specific installation. The information presented in the computer output is for review, interpetation, application and approval by a qualified engineer who must assume full responsibility for verifying that said output is appropriate and correct. There are no express or implied warranties. The use of this product does not constitute endorsement by ACPA or any other agents.

DATE:

DESIGNER:

PROGRAM SAMM D-LOAD REQUIREMENTS FOR A 48 IN. DIAMETER CIRCULAR P. ************************************	IPE *******
DIAMETER (in.) WALL B, THICKNESS (in.)	48.00 5.000
INSTALLAT ION CONDITIONS	
MINIMUM DEPTH OF FILL (ft.) MAXIMUM DEPTH OF FILL (ft.) SOIL DENSITY (lb/cu. ft.) SPECIFIED BEDDING FACTOR INSTALLATION TYPE TRENCH WIDTH (ft.) SOIL LATERAL PRESSURE/FRICTION TERM (KMU') PARAMETERS TO COMPUTE TRANSITION WIDTH POSITIVE PROJECTION RATIO POSITIVE SETTLEMENT RATIO SOIL LATERAL PRESSURE/FRICTION TERM (KMU) SOIL LATERAL PRESSURE COEFICIENT A_D D I T I O N A L L O A D S	0.50 20.00 140.0 1.90 TRENCH 8.83 0.1650 1.00 0.50 0.1924 0.33
LIVE LOAD NO SURCHARGE LOAD FACTORS OF SAFETY	AASHTO HS-20
FACTOR OF SAFETY ON 0.01 INCH CRACK D-LOAD (EARTH, LIVE). FACTOR OF SAFETY ON ULTIMATE LOAD (EARTH, LIVE) IN ACCORDANCE DL.01 LESS THAN 2000 LBS/FT/FT DL.01 GREATER THAN 3000 LBS/FT/FT DL.01 BETWEEN 2000 AND 3000 LBS/FT/FT	1.00; 1.00 WITH ASTM C 76 1.5 1.25 INTERPOLATED

ESULTS OF ANALYSIS

SSSSSSSS	AAAAA	AAAA	MMM	N	MM	MMM	. 1	MMIN
SS	AA	AA	MM)	M M	MM	MM	MM	MM
SSSSSSSS	AAAAA	AAAA	MM	M	MM	MM	M	MM
SS	AA	AA	MM		MM	MM		MM
SSSSSSSS	AA	AA	MM		MM	MM		MM

PROGRAM SAMM

AMERICAN CONCRETE PIPE ASSOCIATION VERSION 2.0 - I SEPTEMBER 1990

Program SAMM computes earth loads on concrete pipe in accordance with the methods presented in the Concrete Pipe Design Manual (March 1990) and the Concrete Pipe Handbook (January 1988), published by the American Concrete Pipe Association. The user must select input values suitable to his specific installation. The information presented in the computer output is for review, interpetation, application and approval by a qualified engineer who must assume full responsibility for verifying that said output is appropriate and correct. There are no express or implied warranties. The use of this product does not constitute endorsement by ACPA or any other agents.

•									
FIPE	EZ	ARTH LO	AD	LIVE	SURCH	TOTAL		REQUIRED	
DEPTH	ARCHING	>TRANS	LOAD	LOAD	LOAD	LOAD	FACT	0.01 in.	
(ft.)	FACTOR		(lb/ft)	(lb/ft)	(lb/ft)	(lb/ft)		(lb/ft/f	t)
				St. 198		-			0.000.000
0.5	1.02	Y	345.	2584.	0.	2929.	1.90	385.	578.
1.0	1.04	Y	704.	2331.	0.	3035.	1.90	399.	599.
1.5	1.06	X	1078.	2623.	0.	3701.	1.90	487.	731.
2.0	1.08	Y	1467.	2475.	0.	3942.	1.90	519.	778.
2.5	1.11	Y	1872.	1994.	0.	3866.	1.90	509.	763.
3.0	1.13	Y	2293.	1474.	0 +	3766.	1.90	496.	743.
3.5	1.15	Y	2731.	1226.	0.	3957.	1.90	521.	781.
4.0	1.18	Y	3187.	1039.	0.	4226.	1.90	556.	834.
4.5	1.20	Y.	3662.	893.	0.	4555.	1.90	599.	899.
5.0	1.23	Y	4156.	778.	0.	4933.	1.90	649.	974.
5.5	1.25	Y	4670.	684.	0.	5353.	1.90	704.	1057.
6.0	1.28	Y Y	5204.	606.	0.	5811.	1.90	765.	1147.
6.5	1.31	X	5761.	542.	0.	6303.	1.90	829.	1244-
117.0	1.34	Y	6340.	487.	0.	6827.	1.90	898.	1348.
7.5	1.37	Y	6943.	441.	0.	7384.	1.90	972.	1457.
8.0	1.40	Y	7570.	401.	0.	7971.	1.90	1049.	1573.
8.5	1.43	A	8222.	366.	0.	8589.	1.90	1130.	1695.
9.0	1.46	Y	8884.	336.	0.	9220.	1.90	1213.	1820.
9.5	1.46	Y	9394.	309.	0.	9703.	1.90	1277.	1915.
10.0	1:47	Y	9917.	286.	0.	10203.	1.90	1343.	2014.
10.5	1.47	Y	10429.	265.	0.	10694.	1.90	1407.	2111.
1.0	1.47	Y	10940-	246.	0.	11187.	1.90	1472.	2208.
, 11.5	1.47	Y	11452.	230.	0.	11681.	1.90	1537.	2306.
U 12.0	1.47	N	11954.	215.	0.	12169-	1.90	1601.	2402.
12.5	1.46	N	12345.	201.	0.	12546.	1.90	1651.	2476.
13.0	1.45	N	12729.	189.	0	12918.	1.90	1700.	2550.

13.5	1.43	N	13106.	177.	0.	13283.	1.90	1748.	2622.
-114.0	1.42	N	13475.	167.	0.	13643.	1.90	1795.	2693.
W14.5	1.41	N	13838.	158.	0.	13996.	1.90	1842.	2762.
-15.0	1.40	N	14195.	149.	0.	14344.	1.90	1887.	2831.
15.5	1.39	N	14544.	141.	0.	14685.	1.90	1932.	2898.
16.0	1.38	N	14887.	134.	0.	15021.	1.90	1976.	2965.
16.5	1.36	N	15224.	127.	0.	15351.	1.90	2020.	3020.
17.0	1.35	N	15555.	121.	.0 .	15676.	1.90	2063.	3062.
117.5	1.34	N	15879.	1.15.	0.	15994.	1.90	21.05.	3102.
18.0	1.33	N	16197.	110.	.0 .	16307.	1.90	2146.	3140.
18.5	1.32	N	16510.	105.	0.	16615.	1.90	2186.	3177.
19.0	1.31	N	16817.	100.	0.	16917.	1.90	2226.	3213.
19.5	1.30	N	17118.	96.	0.	17213.	1.90	2265.	3247.
20.0	1.29	N	17413.	92.	0.	17505.	1.90	2303.	3280.

..

7

.

÷

are the state of the first of the state of t

DATE: / /

DESIGNER:

PROGRAM SAMM	
D-LOAD REQUIREMENTS FOR A 72 IN. DIAMETER CIRCULAR I	PIPE
**************	*****
PTPE DATA	
EIEE DAIA	الشامانية بشاعة سائما جراس بوائي بوائي والرابيات
	72.00
DIAMETER (in.)	7.000
WALL B, THICKNESS (in.)	7.000
INSTALLATION CONDITIONS	
MINIMUM DEPTH OF FILL (ft.)	1.00
	25.00
MAXIMUM DEPTH OF FILL (ft.)	140.0
SOIL DENSITY (lb/cu. ft.)	1.90
SPECIFIED BEDDING FACTOR	
INSTALLATION TYPE	TRENCH
TRENCH WIDTH (ft.)	11.17
SOIL LATERAL PRESSURE/FRICTION TERM (KMU)	0.1650
PARAMETERS TO COMPUTE TRANSITION WIDTH	
POSITIVE PROJECTION RATIO	1.00
POSITIVE SETTLEMENT RATIO	0.50
SOIL LATERAL PRESSURE/FRICTION TERM (KMU)	0.1924
SOIL LATERAL PRESSURE COEFICIENT	0.33
BOLL REPRESE FREDERIC	*,
ADDITIONAL LOADS	مرات کارس کے بعد بولی میں میں ان میں ان میں ان ان ان ان ان ان ان ان ان ان ان ان ان
	AASHTO HS-20
LIVE LOAD	HADIIO III 20
NO SURCHARGE LOAD	
FACTORS OF SAFETY	
	حصد ساحات حالته ضايبا سايد تذاب إنبا
FACTOR OF SAFETY ON 0.01 INCH CRACK D-LOAD (EARTH, LIVE) FACTOR OF SAFETY ON ULTIMATE LOAD (EARTH, LIVE) IN ACCORDANCE DL.01 LESS THAN 2000 LBS/FT/FT	1.00; 1.00 E WITH ASTM C 76 1.5 1.25
DL.01 GREATER THAN 3000 LBS/FT/FT	INTERPOLATED
DL.01 BETWEEN 2000 AND 3000 LBS/FT/FT	THENTOMOTON

RESULTS OF ANALYSIS

	المهار المهادر ومهورة والمؤرد أنشاء المهادر ال	يالمن بين خلو بالبر جس هنو .	، سب مبه تنه منه سبو ميو سب ب	and and large large and the first case	عيد عد فخر منه منز يهم يور تيه	, poquique (peut) pitti i liperi lashi (bir terar i task		و خبو يقد مندرجيو(اجيز عمر جبار احد	ماريت لمرجمانين بلا ب
PIPE	EA	DEDIT TO	17	LIVE	SURCH	TOTAL	BED	REQUIRED	D TOND
DEPTH	ARCHING			LOAD	LOAD	LOAD	FACT		
	FACTOR	>TKHN2	(lb/ft)		(lb/ft)	(lb/ft)	PACI	(lb/ft/	
(ft.)	PACTOR		(AU/IL)	(TD) TC)	(AD/TE)	(TD) TC)		ATD/IC/	LL)
1.0	1.03	Y	1031.	1735.	0	2766.	1.90	243.	364.
1.5	1.04	Ŷ	1567.	2580.	o.	4147.	1.90	364.	546.
2.0	1.06	Ϋ́	2118.	2185.	0.	4303.	1.90	377.	566.
2.5	1.07	Ŷ	2684.	1810.	o.	4494.	1.90	394.	591.
3.0	1.09	Ÿ	3266.	1574.	ŏ.	4840.	1.90	425.	637.
3.5	1.10	Ÿ	3863.	1509.	0.	5373.	1.90	471.	707.
4.0	1.12	Ā	4477.	1327.	0.	5804.	1.90	509.	764.
4.5	1.13	Y	5107	1148.	0.	6255.	1.90	549.	823.
	1.15	Ā.	5755.	1005.		6759.	1.90	593.	889.
5.0			6420.	888.	0.	7308.	1.90	641.	962.
5.5	1.16	Y			0.			692	
6.0	1.18	X	7103.	791.	0 -	7894.	1.90		1039.
6.5	1.20	Y	7805.	710.	0 -	8515.	1.90	747.	1120.
7.0	1.21	Y	8525.	642.	0.	9167.	1.90	804.	1206.
7.5	1.23	Y	9266.	583.	0.	9849.	1.90	864.	1296.
8.0	1.25	Y	10026.	532.	0.	10558.	1.90	926.	1389.
8.5	1.27	Y	10808.	488.	g.	11295.	1.90	991.	1486.
9.0	1.29	Y	11610.	449.	0.	12059.	1.90	1058.	1587.
9.5	1.30	Y	12435.	414.	0.	12849.	1.90	1127.	1691.
10.0	1.32	Y	13281.	384.	0.	13665.	1.90	1199.	1798.
10.5	1.34	N	14117.	357.	0.	14474.	1.90	1270.	1905.
11.0	1.33	N.	14686.	333.	0.	15019.	1.90	1317.	1976.
11.5	1.32	N	15247.	311.	0.	15558.	1.90	1365.	2047.
12.0	1.31	N	15800.	291.	0.	16091.	1.90	1411.	2117.
12.5	1.30	N	16344.	273.	0.	16618.	1.90	1458.	2187.
13.0	1.29	N	16881.	257.	0.	17138.	1.90	1503.	2255.
13.5	1.29	N	17409.	242.	0.	17652.	1.90	1548.	2323.
14.0	1.28	N	17930.	229.	. 0.	18159.	1.90	1593.	2389.
14.5	1.27	N	18444.	216.	0.	18660.	1.90	1637.	2455.
15.0	1.26	N	18949.	205.	0.	19154.	1.90	1680.	2520.
W 15.5	1.25	N	19448.	194.	0.	19642.	1.90	1723.	2584.
	1.24	N	19939.	185.	0.	20123.	1.90	1765.	2648.
16.5	1,23	N	20422.	176.	0.	20598.	1.90	1807.	2710.
17.0	1.23	N	20899.	167.	0.	21066.	1.90	1848.	2772.
17.5	1.22	N.	21369.	160.	0.	21528.	1.90	1888.	2833.
18.0	1.21	И	21832.	152.	0 -	21984.	1.90	1928.	2893.
18.5	1.20	N	22288.	146.	0.	22433.	1,90	1968.	2952.
19.0	1.19	N	22737.	139.	0.	22876.	1.90	2007.	3007.
19.5	1.18	N	23180.	133.	0.		1.90	2045.	3044.
20.0	1.18	N	23616.	128.	0.	23744.	1.90	2083.	3081.
20.5	1.17	N	24046.	123.	. 0.	24168.	1.90	21.20.	3116.
21.0	1.16	N	24469.	118.	0.	24587.	1.90	2157.	3151.
21.5	1.15	N	24887.	113.	0.	25000.	1.90	2193.	3184.
22.0	1.15	N	25298.	109.	0.	25407.		2229.	3216.
22.5	1.14	N	25703.	105.	0.	25808.	1.90	2264.	3246.
23.0	1.13	N	26102.	101.	0.	26203.	1.90	2299.	3276.
23.5	1.12	N	26496.	97.	0.	26593.		2333.	3305.
24.0	1.12	N	26883.	94.	0.	26977.	1,90	2366.	3333.

1

 24.5
 1.11
 N
 27265.
 91.
 0.
 27356.
 1.90
 2400.
 3360.

 25.0
 1.10
 N
 27642.
 87.
 0.
 27729.
 1.90
 2432.
 3386.

DATE:

1 1

DESIGNER:

APPENDIX C

Referenced Material and Supporting Documents (On CD)

SUPPLEMENT NO. 1 TO THE 2nd UPDATE TO THE TECHNICAL DRAINAGE STUDY FOR QUEENS BOROUGH CULVERT

619.295

MARCH 2006

Prepared for:

JMA Architecture Studios 10150 Covington Cross Drive Las Vegas, Nevada 89144 Phone: (702) 731-2033 Fax: (702) 731-2039

Prepared by:

G. C. Wallace, Inc. 1555 S. Rainbow Blvd. Las Vegas, Nevada 89146 Phone: (702) 804-2000 Fax: (702) 804-2297

RECEIVED

CITY OF LINTER-OF				NDUM	April 21, 2006 G.C. WALLACE
TO: Land Developme Department of Pu				FROM: Albert Sung, P.E. Flood Control Project Engineer Department of Public Works	
SUBJECT:	Te	chnical	Drainage S	tudy for:	COPIES TO:
	Queen	s Borro	ugh Culve	rt	G. C. Wallace, Inc.
(Plans AKA	: The V	/illage a	t Queensr	idge Culvert)	
Cross Streets:	NEC	of Alta	Drive & Ra	mpart Boulevard	JMA Architecture
File Number:	F:\Dep	ot\DSM	MOS\DS3	674F.ZNA.doc	Bart Anderson, P.E., DevCo
Parcel Number:	138-3	2-601-0	03		CCRFCD
FEMA Flood Zor	ie	YES	Х	NO	
Proposed Storm	Drain	YES	Χ	NO	1

HISTORY	DATE RECEIVED	DATE REVIEWE D	COMMENTS	REVIEW FEES	FEES PAID Trn. No.
1 st Submittal	10/25/2004	11/9/2004	Not Approved	\$400.00	11413: \$400
2 nd Submittal	12/6/2004	12/20/2004	See Comments Below	\$400.00	13199: \$400
3 rd Submittal	3/4/2005	3/18/2005	Conditionally Approved	N/C	
4 th Submittal	8/9/2005	8/23/2005	See Comments Below	\$400.00	27281: \$400
5 th Submittal	12/15/2005	12/30/2005	See Comments Below	\$400.00	35359: \$400
6 th Submittal	2/28/2006 3/30/2006 & 4/20/2006	4/21/2006	See Comments Below	N/C	N/C
			TOTAL FEES (LDDRS):	\$1,600.00	****

REMARKS: 6th Submittal: Revised the on-site RCB alignment at the northeast corner of the site. Revised the RCB outfall structure, to include additional grading within Angel Park and the relocation of the concrete access road.

The Drainage Study for the subject project has been reviewed and:

Х	is approved subject to conformance to all City standards and the following conditions:
	must be resubmitted or supplemented including the following:
	is conditionally approved subject to Clark County Regional Flood Control District
	concurrence.

- 1. The existing 48'-public drainage easement (Doc # 20051129:04185) must be vacated and a new easement dedicated to reflect the revised storm drain location. Provide a new legal description and exhibit to the Right-of-Way Section with a copy to Flood Control for review and approval. The revised easement must record concurrently with the vacated easement. The new easement must record prior to the final approval of the future technical drainage study needed for onsite development or approval of any final maps. It is noted that the public drainage easement must be privately maintained both on the surface and within the box culvert.
- 2. The revised plans for the storm drain system (CLV # 107y4889-CUL) must be submitted to Land Development for approval of this proposed revision.

3. The engineer has provided a copy of the FEMA Conditional Letter of Map Revision (CLOMR), Case No. 05-09-0420R for the subject project. The engineer is advised that they are required to obtain FEMA approval for this revision as well as the completed "As-Built" condition in order to obtain the Letter of Map Revision (LOMR). The approved LOMR must be submitted to the City of Las Vegas prior to the release of the bond.

NOTE: The engineer must submit the drainage study to FEMA for a Conditional Letter of Map Revision (CLOMR). A favorable CLOMR must be obtained prior to the issuance of any permits. This site is located in a FEMA Zone A. Clark County Regional Flood Control District (CCRFCD) review and approval is required prior to recordation of final map or issuance of building/grading permits. The Engineer must send a copy of the report to the CCRFCD for review. The developer/engineer must also obtain a Letter of Map Revision (LOMR) using the approved drainage study as technical support to inform FEMA of the modifications within the flood zone. The approved LOMR must be submitted to the City of Las Vegas prior to the release of the bond. FEMA Elevation Certificates, showing as-built finish floor elevations, must be completed for each building in the FEMA A Zone. The certificate must be submitted to the City of Las Vegas Flood Control Section prior to scheduling a framing inspection.

NOTE: Please be advised that all land surface area disturbances over 1 acre or any area adjacent to a water way must submit to the Nevada Division of Environmental Protection a "Notice of Intent" to discharge that certifies a stormwater pollution prevention plan has been developed and is maintained on site; for inclusion in the Stormwater General Permit No. NVR100000. A phased construction unit in a contiguous subdivision is considered under construction until all stripped or disturbed surface areas have been covered by paving, building construction or planting. For more information, including forms and applications see http://ndep.nv.gov/bwpc/storm01.htm or call (775) 687-9429.

END OF REMARKS

B&H/ays/pbi

T/R/S: T20S/R60E/32

AREA L-32

619.295

Control of the state o

March 30, 2006

G. C. WALLACE, INC.

Writer's Contact Information: 804-2029

Albert Sung, PE Flood Control Project Manager City of Las Vegas Land Development Services 731 South Fourth Street Las Vegas, Nevada 89101

Re: Supplement No. 1 to the 2nd Update to the Technical Drainage Study for Queens Borough Culvert (DS3674)

Dear Mr. Sung:

The purpose of this letter is to amend the design submitted within the 2^{nd} Update to the Technical Drainage Study for Queens Borough Culvert (DS3674). The proposed amendments are at the City of Las Vegas' request and are as follows:

The existing embankment, located approximately 180 feet east of the RCB headwall, will be removed. Since removal of this embankment section produces increased flow velocity within the channel, a 95-foot long riprap pad (d50 = 24-inches; thickness = 48-inches) is proposed at the RCB outlet. The WSPGW calculations have been revised to model the embankment removal.

As a result of the proposed channel improvements, the RCB access road alignment has been shifted. The revised access road cross-section detail and profile are provided with the grading packet. The proposed revisions do not adversely impact the adjacent properties or downstream facilities and are in agreement with the City of Las Vegas' drainage criteria.

Copies of the water surface profile model, RCB outlet protection calculations, and proposed grading plans are provided in the Appendix.

If you have any questions or require additional information, please contact me at 804-2029.

Very truly yours,

G. C. WALLACE, INC.

Cindy Kinzer, El

Designer

Christopher M. Luquette, PE, CFM

Project Manager

Flood Control Division

CML/CK/jj

Enc.

c: Roy Clark, GCW

G:\619-295\admin\tr\clv-SupImnt1-2UPDATE-QueensBoro-ck-cl-3-30-06.doc

FILE: QB12X12-U2.WSW

W S P G W - CIVILDESIGN Version 14.06
Program Package Serial Number: 1622
WATER SURFACE PROFILE LISTING
QUEENSBOROUGH CULVERT - JMA ARCH STUDIOS
GCWALLACE PROJECT # 619.295
FILENAME: 0812X12-U2.WSW CJK

PAGE 1 Date: 3-16-2006 Time:10: 6: 6

FILENAME: QBIZXIZ-UZ WSW CJK												******		
Station	Invert Elev	Depth (FT)	Water Elev	Q (CFS)	Vel (FPS)	Vel Head	Energy Grd.El.	Super Elev	Critical Depth		Height/ DiaFT	Base Wt or I.D.	ZL	No Wth
L/Elem	Ch Slope	*****	*****	****	•	SF Ave	HF ******	SE Dpth	Froude N	Norm Dp	"N"	X-Fall	ZR	Type Ch
-3625.000	14.000	' 7.834' i	21.834	4497.00	17.38	4.69	26.53	.00	9.28	62.96	! !	1 -	_	0 ,0
TRANS STR	.0400					.0187	1.41	7.83	1.51		.035			IR-
-3550.000	17.000	8.266	25.266	4497.00	13.55	2.85	28.12	.00	8.27	58.19	 	 2 1:		0 .0
TRANS STR	.0100	· ·		' '		.0070	. 35	8.27	1.00		.035		-	IR-
-3500.000	17.500	10.031	27.531	4497.00	8.46	1.11	28.64	.00	7.33	75.12	 	 3 1:		0.0
TRANS STR	.0328						-	10.03	.56	<u> </u>	. 040		-	IR-
-3401.010 -	20.750	2.481	23.231	4497.00	31.66	15.56 - ~	38.79	.00	5.67	63.50] 1	4		0.0
TRANS STR OPEN	.0110			-1	[.0371	1.86	2.48	3.73	-	.015	-	-	IR-
-3350.810	21.300	2.522	23.822	4497.00	33.25	17.16	40.99	.00	5.89	59.13] ! _	 5 - ~ -		0 .0
TRANS STR	.0141		·		,	.0413	1.03	2.52	3.87		.015	1.	-	IR~
-3325.950 -	21.650	2.323	23.973	4497.00	34.29	18.26 	42.23	.00	5.71	60.97	! •	6 6		0 .0
TRANS STR	.0160			-1	- 1	.0340	. 34	2.32	4.12	-	.015	-	-	IR-
-3315.950	21.810	5.925	27.735 	4497.00	31.62	15.53 	43.26	.00	10.29	25.00	12.000	25.000	.00	1 1.0
90.310 [°]	.0152	i			1	.0249	2.24	5.93	2.34	7.02	.015	.00	.00	BOX
-3225.640 -	23.180	5.731	28.911 	4497.00	32.69				10.29 	25.00 	12.000	25.000' -	.00	1 1.0
2.320 -3223.320	0776 23.000	5.682	28.682	4497.00	32.98	16.89	.06 45.57	5.73 12.00	2.46 10.29	.00 25.00	.015 12.000	.00	.00	BOX
70.620									[2.49	23.00 - 5.55		25.000 - .00	.00	1 1.0 - BOX

FILE: QB12X12-U2.WSW

W S P G W - CIVILDESIGN Version 14.06 Program Package Serial Number: 1622 WATER SURFACE PROFILE LISTING QUEENSBOROUGH CULVERT - JMA ARCH STUDIOS GCWALLACE PROJECT # 619.295 FILENAME: QB12X12-U2.WSW CJK

FILENAME: QBLZXLZ-UZ.WSW CJK														
Station	Invert Elev	Depth (FT)	Water Elev	Q (CFS)	Vel (FPS) 	Vel Head	Energy Grd.El.	Super Elev	Critical Depth	Flow Top Width	Height/ DiaFT		ZL	No Wth Prs/Pip
L/Elem	Ch \$1ope	*****	*****	*****	******	SF Ave	HF *******	SE Dpth	Froude N	Norm Dp	"N"	X-Fall	ZR ****	Type Ch
-3152.700	25.000	5.709	30.709	4497.00	32.82 	16.73	47.44	.00	10.29	25.00	12.000	25.000	.00	1 1.0
17.410	.0276			,		.0262	.46	5.71	2.47	5.60	.015	.00	.00	вох
-3135.290	25.480	5.714	31.194	4497.00	32.79	16.70	47.89	12.00	10.29	25.00	12.000	25.000	.00	1 1.0
85.300	.0279				' * !	.0260	2.21	12.00	2.47	5.58	.015	.00	.00	вох
-3049.990	27.860	5.748	33.608	4497.00	32.60	16.50	50.11	.00	10.29	25.00	12:000	25.000	.00	1 1.0
143.470	.0279				 	.0253	3.63	5.75	2.45	5.58	.015	.00	.00	вох
-2906.520	31.860	5.829	37.689	4497.00	32.15	16.05	53.73	.40	10.29	25.00	12.000	25.000	.00	1 1.0
203.401	.0278	I	1		ı — —	.0238	4.83	6.22	2.39	5.58	.015	.00	.00	вох
-2703.119	37.523	6.024	43.546	4497.00	31.11 	15.02	58.57	'.37 	10.29	25.00	12.000	25.000	.00	1 1.0
165.794	.0278	1	,	,		.0214	3.54	6.39	2.28	5.58	.015	.00	.00	вох
-2537.325	42.138	6.318	48.456	4497.00	29.66	13.66	62.11	.34	10.29	25.00	12.000	25.000	.00	1 1.0
103.695	.0278		,	,	, , ,	.0188	1.95	6.65	2.12	5.58	.015	.00	.00	вох
-2433.630	45.025	6.626	51.651	4497.00	28.28 	12.42	64.07	12.00	10.29	25.00	12.000	25.000	.00	1 1.0
60.182	.0278		-1			.0168	1.01	12.00	1.98	5.58	.015	.00	.00	BOX
-2373.448	46.700	6.888	53.588	4497.00	27.20	11.49	65.08	12.00	10.29	25.00	12.000	25.000	.00	1 1.0
55.228	.0278	,	,	,	,- - ,	.0150	.83	12.00	1.86	5.58	.015	.00	.00	вох
-2318.220	48.238	7.224	55.462	4497.00	25.94	10.45	65.91	.00	10.29	25.00	12.000	25.000	.00	1 1.0
26.702	.0278	,	- ~1	,	ı- - [.0136	.36	7.22	1.74	5.58	.015	.00	.00	BOX

PAGE 2

Date: 3-16-2006 Time:10: 6: 6

FILE: QB12X12-UZ.WSW

W S P G W - CIVILDESIGN VERSION 14.06 Program Package Serial Number: 1622 WATER SURFACE PROFILE LISTING QUEENSBOROUGH CULVERT - JMA ARCH STUDIOS GCWALLACE PROJECT # 619.295 FILENAME: QB12X12-U2.WSW CJK

Date: 3-16-2006 Time:10: 6: 6

FILENAME: 0B12x12-U2 WSW CJK													. 4. 4.		
Station	Invert Elev	Depth (FT)	Water Elev	Q (CFS)	Vel (FPS)	Vel Head	Energy Grd.El.	Super Elev	Critical Depth	Flow Top Width	Height/ DiaFT	Base Wt or I.D.	ZL	No W	
L/Elem	Ch Slope	*****	****	*****	*****	SF Ave	HF ******	SE Dpth	Froude N	Norm Dp	"N" *****	X-Fall	ZR *****	Type	Ch ***
-2291.518	48.982	7.440	56.421	4497.00	25.19	9.85	66.27	.00	10.29	25.00	12.000	25.000	.00	, 1	1.0
34.206	.0278	i -		-	 -	.0123	. 42	7.44	1.66	5.58	.015	.00	.00	BOX	
-2257.313	49.934	7.803	57.737	4497.00	24.01	8.95	66.69	.00	10.29	25.00	12.000	25.000	.00	, 1	1.0
25.506	.0278	1			- 	.0109	.28	7.80	1.55	5.58	.015	.00	.00	BOX	
-2231.807	50.644	8.184	58.828	4497.00	22.90	8.14	66.97	.00	10.29	25.00	12.000	25.000	.00	. 1	1.0
18.679	.0278	1 -			- - 	.0096	.18	8.18	1.44	5.58	.015	.00	.00	BOX	
-2213.128	51.164	8.583	59.748	4497.00	21.83	7.40	67.15	.00	10.29	25.00	12.000	25.000	.00	<u>'</u> 1	1.0
13.128	.0278		! ! !	- 	 	.0085	.11	8.58	1.34	5.58	.015	.00	.00	BOX	
-2200.000	51.530	9.002	60.532	4497.00	20.81	6.73	67.26	.00	10.29	25.00	12.000	25.000	.00	1	1.0
60.785	.0080	! ! !	i		: [:	.0080	. 49	9.00	1.25	9.00	.015	.00	.00	BOX	
-2139.215	52.016	9.002	61.018	4497.00	20.81	6.73	67.75	.00	10.29	25.00	12.000	25.000	.00	<u>'</u> 1	1.0
405.355	.0080		i 1	, —	, _[.0077	3.13	9.00	1.25	9.00	.015	.00	.00	BOX	
-1733.860	55.259	9.255	64.514	4497.00	20.24	6.36	70.88	12.00	10.29	25.00	12.000	25.000	.00	¦ 1	1.0
54.700	.0080		i -		;; :	.0074	.40	12.00	1.20	9.00	.015	.00	.00	BOX	
-1679.160	55.697	9.355	65.051	4497.00	20.03	6.23	71.28	12.00	10.29	25.00	12.000	25.000	.00	<u>.</u> 1	1.0
95.423	.0080	···	! : !		, <u>-</u> 1	.0069	. 65	12.00	1.18	9.00	.015	.00	.00	BOX	
-1583.737 -	56.460	9.811	66.271	4497.00	19.10	5.66	71.93	12.00	10.29	25.00	12.000	25.000	.00	1	1.0
18.737	.0080		, -,	_	,	.0061	.11	12.00	1.10	9.00	.015	.00	.00	BOX	

PAGE 3

FILE: Q812X12-U2.WSW

W S P G W - CIVILDESIGN Version 14.06 Program Package Serial Number: 1622 WATER SURFACE PROFILE LISTING QUEENSBOROUGH CULVERT - JMA ARCH STUDIOS GCWALLACE PROJECT # 619.295 FILENAME: QB12X12-U2.WSW CJK

Date: 3-16-2006 Time:10: 6: 6

FILENAME: QB1ZX1Z-UZ, WSW CJK															
1	Invert	Depth	Water	l o	l Vel	ve1	Energy	Super	Critical	Irlan Tan	Boight /			INO W	.ma
Station	Elev	(FT)	Elev	(CFS)	(FPS)	Head	Grd.E1.	Elev	Depth			or I.D.		Prs/	
L/Elem C	h Slope	*****	*****	******	******	SF Ave	HF	SE Dpth	Froude N	Norm Dp	"N"	X-Fall	ZR	Type	
-1565.000	56.610	10.291	66,901	4497.00	18.21	5.15	72.05	.00	10.29	25.00	12.000	25.000	.00	1	1.0
88.377	.0050	- 	· :	 	 	.0051	.45	10.29	1.02	10.85	.015	.00	.00	BOX	
-1476.623	57.053	10.793	67.846	4497.00	17.36	4.68	72.53	.00	10.29	25.00	12.000	25.000	.00	1	1.0
257.531	.0050	' ' ! !			i - 1	.0050	1.29	10.79	.95	10.85	.015	.00	.00	BOX	
-1219.092	58.343	10.853	69.196	4497.00	17.26	4.63	73.82	.00	10.29	25.00	12.000	25.000	.00	1	1.0
219.092	.0050			WARN	rng - Flo	.0050	1.10 near top (10.85		10.85	.015	.00	.00	BOX	
-1000.000	59.440 -	10.853 	70.293	4497.00	1	4.63	74.92	.00	10.29 	 25.00 	12.000 -	25.000 	l -	1 -	1.0

PAGE 4

SUMMERLIN ELEVATION: 2726.11 FEET

ADD 2.27 TO THE CURRENTLY USED SUMMERLIN BENCH TO EQUAL TO THE APPROVED CITY OF LAS VEGAS BENCH

PECCOLE NEVADA CORPORATION

851 SOUTH RAMPART BLVD LAS VEGAS NV 89145 (702) 933-1111

PROJECT LOCATION!

JMA ARCHITECTURE STUDIOS

10150 COVINGTON CROSS LAS VEGAS NV 89144 (702)731-2033

APPROVALS

CITY OF LAS VEGAS

"APPROVAL OF THESE PLANS BY THE CITY ENGINEER IS LIMITED TO THOSE IMPROVEMENTS CONSTRUCTED IN THE DEDICATED RIGHTS—OF—WAY AND/OR DEDICATED EASEMENTS.
HIS APPROVAL DOES NOT AUTHORIZE THE CONSTRUCTION OF ANY IMPROVEMENTS THAT DEVIATE FROM ADOPTED STANDARDS AND/OR SPECIFICATIONS EXCEPT THOSE SPECIFICALLY USETED UNDER "DEVAINION FROM STANDARDS." THE ENGINEER SHALL RESOLVE ANY DEVIATION OTHER THAN THOSE LISTED IN "DEVAITION FROM STANDARDS" IN FAVOR OF THE SUMMERLIN IMPROVEMENT STANDARDS AND SPECIFICATIONS CLARK COUNTY AREA NEVADA".

CITY OF LAS VEGAS, NEVADA

THIS PLAN MEETS THE APPLICABLE STANDARDS OF THE PLANNING AND DEVELOPMENT

SOUTHWEST GAS CORP.

COX COMMUNICATIONS LAS VEGAS, IN

INDEX OF DRAWINGS

TITLE AND DESCRIPTION COVER SHEET GENERAL NOTES
MASTER GRADING PLAN STORM DRAIN PLAN & PROFILE (STA. 10+00.00 TO 17+00.00) STORM DRAIN PLAN & PROFILE (STA. 17+00.00 TO 24+00.00) STORM DRAIN PLAN & PROFILE (STA. 24+00.00 TO 33+00.00)

DETAIL SHEET
DETAIL SHEET
STORM DRAIN PLAN & PROFILE (STA. 31+50.00 TO 36+00.00)
STRUCTURAL SECTION AND DETAILS
STRUCTURAL SECTION AND DETAILS

Avoid cutting underground utility lines. It's costly. Call before you Dig 1-800-227-2600

1-702-455-7511

C-1

유립

CITY OF LAS VEGAS GENERAL NOTES

- ALL CONSTRUCTION AND MATERIALS SHALL BE IN ACCORDANCE WITH THE "UNIFORM STANDARD SPECIFICATIONS FOR PUBLIC WORKS CONSTRUCTION OFF-STE IMPROVEMENTS, CLARK COUNTY AREA NEVADA", LATEST ISSUE; THE "UNIFORM STANDARD DRAWNES FOR PUBLIC WORKS CONSTRUCTION, CLARK COUNTY AREA WEAVAD", LATEST REVISED EDITION; THE "SUMMERLIN MEROVEMENT STANDARDS" FOR WORK IN THE SUMMERLIN AREA; AND OTHER APPLICABLE APPROVED STANDARDS ISSUED BY THE CONTROLLING ACENCY, THE UNIFORM BUILDING CODE; AND ALL CLACL CITY CODES AND ORDINANCES APPLICABLE, EXCEPT AS NOTED ON THIS SHEET AS "DEVARTIONS FROM STANDARDS".
- THE EXISTENCE AND LOCATION OF ANY OVERHEAD OR UNDERGROUND UTILITY LINES, PIPES, OR STRUCTURES SHOWN ON THESE PLANS ARE OBTAINED BY A RESEARCH OF THE AVAILABLE RECORDS. EXISTING UTILITIES AS SHOWN FROM CLV PLANS UBDRAY. ARE APPROXAMATE AND FOR RECORD PUMPOSES. EXISTING UTILITIES ARE LOCATED ON PLANS ONLY FOR THE CONVENIENCE OF THE CONTRACTOR. EXISTING UTILITY SERVICE LATERALS MAY NOT BE SHOWN ON THE PLANS. THE CONTRACTOR SHALL, AT HIS OWN EXPERSE, LOCATE ALL UNDERGROUND AND OVERHEAD INTERFERENCE'S WHICH MAY REFECT HIS OFERATION DURING CONSTRUCTION AND SHALL TAKE ALL NECESSARY PRECAUTIONS TO AVOID DAMAGE TO SAME. THE CONTRACTOR SHALL USE EXTREME CAUTION WHEN WORKING NEAR OVERHEAD UTILITIES SO AS TO SAME. THE CONTRACTOR SHALL USE EXTREME CAUTION WHEN WORKING NEAR OVERHEAD UTILITIES SO AS TO SAME. THE CONTRACTOR SHALL USE STRENGE AND SHALL THE CONTRACTOR SHALL USE STRENGE AND SHALL AND SHALL
- THE CONTRACTOR SHALL TAKE ALL PRECAUTIONARY MEASURES NECESSARY TO PROTECT EXISTING UTILITY LINES, STRUCTURES AND STREET IMPROVEMENTS WHICH ARE TO REHAIN IN PLACE, PROM DAMAGE, AND ALL SUCH IMPROVEMENTS OR STRUCTURES AND AMAGED BY THE CONTRACTOR'S OPERATIONS SHALL BE REQUIRED OR REPLACED SATISFACTORY TO THE CITY ENGINEER AND OWNING UTILITY COMPANY AT THE EXPENSE OF THE CONTRACTOR.
- ALL CONSTRUCTION SHALL BE SHOWN ON THESE PLANS, ANY REVISIONS SHALL HAVE THE PRIOR WRITTEN APPROVAL OF THE CITY ENGINEER.
- TYPE V CEMENT SHALL BE USED IN ALL OFF-SITE CONCRETE WORK. CONCRETE TO BE 3000 P.S.I. MINIMUM \$28 DAYS. MIX DESIGN TO BE APPROVED BY THE CITY ENGINEER, PRIOR TO THE USE ON THE PROJECT.
- PERMITS ARE REQUIRED FOR ANY WORK IN THE PUBLIC RIGHT-OF-WAY. THE CONTRACTOR SHALL SECURE ALL PERMITS AND INSPECTIONS REQUIRED FOR THIS CONSTRUCTION.
- AC PAVEMENT TO BE ONE-HALF INCH (1/2") ABOVE LIP OF ALL GUTTERS AFTER COMPACTION, EXCEPT AT SIDEN CROSS GUTTERS.
- CURB AND GUTTER FOUND TO BE UNACCEPTABLE TO THE CITY OF LAS VEGAS SHALL BE REMOVED AND REPLACED FER SUMMERLING STANDARD DRAWING S-47. SIDEWALK RAMPS SHALL BE CONSTRUCTED IN EACH QUADRANT OF AN INTERSECTION PER STANDARD SUMMERLIN DRAWINGS. EXACT LOCATION OF RAMPS MAY BE ADJUSTED IN THE FIELD BY A CITY INSPECTOR.
- CONTRACTOR SHALL PROVIDE ALL NECESSARY HORIZONTAL AND VERTICAL TRANSITIONS BETWEEN NEW CONSTRUCTION AND EXISTING SURFACES TO PROVIDE FOR PROPER DRAINAGE AND FOR INGRESS AND EGRESS TO NEW CONSTRUCTION. THE EXTENT OF TRANSITIONS TO BE AS SHOWN ON PLANS.
- ALL GRADING WORK SHALL CONFORM TO THE SOILS REPORT AS PREPARED BY TERRACON, PROJECT NO. 64965481, APPROVED BY THE CITY ENGINEER AND AS SHOWN ON THESE PLANS.
- EXACT LOCATION OF ALL SAWCUT LINES MAY BE ADJUSTED OR DETERMINED IN THE FIELD BY A CITY OF LAS VEGAS ENGINEER IF LOCATION ON PLANS IS NOT CLEARLY SHOWN, OR EXISTING PAVEMENT CONDITION REQUIRES RELOCATIONS.
- THE CONTRACTOR SHALL TAKE ALL PRECAUTIONS NECESSARY TO PROTECT EXISTING PERMANENT SURVEY MONUMENTS. ANY MONUMENTS DISTURBED SHALL BE REPLACED AND ADJUSTED PER AVAILABLE RECORDS IN ACCORDANCE WITH N.R.S. NO. 625,550.
- UTILITY COMPANY METER BOXES, MANHOLE LIDS, VALVE COVERS, ETC., SHALL BE LOCATED OUT OF DRIVEWAYS, DRIVEWAY APRONS, FLORLINES, AND CROSS GUTTERS UNLESS WRITTEN APPROVAL IS GRANTED BY THE UTILITY COMPANY AND THE CITY ENGINEER.
- WALL NOTES: ALL WALLS, NEW OR DOSTING, ARE ONLY SHOWN ON CYNL PLANS FOR THE PURPOSE OF REVIEWING CRADING RELATIONSHIPS: FLOOD CONTROL, AND SIGHT DISTANCE AT INTERSECTION. NEW WALLS REQUIRE A SEPARATE PERMIT AND FLOOD CONTROL AND SIGHT DISTANCE AT INTERSECTIONS. NEW WALLS REQUIRE A SEPARATE PERMIT AND INSPECTION BY THE BUILDING DEPARTMENT.
- ASPHALT MIX DESIGN MUST BE SUBMITTED AND APPROVED BY THE CITY ENGINEER PRIOR TO THE PLACEMENT OF ASPHALT WITHIN CITY RIGHT-OF-WAY.
- CONTRACTOR SHALL ADJUST ALL NEW AND EXISTING INLETS, VALVE BOXES, MANHOLE RIMS, AND SEWER CLEAN OUTS, ETC. TO FINISH GRADE AS APPLICABLE WHETHER OR NOT THEY ARE SHOWN ON THE PLANS.

CITY OF LAS VEGAS GRADING NOTES

- IN THE EVENT THAT ANY UNFORESEEN CONDITIONS NOT COVERED BY THESE NOTES ARE ENCOUNTERED DURING GRADING CPER THE OWNER/ENGINEER SHALL BE IMMEDIATELY NOTIFIED FOR DIRECTION.
- IT SHALL BE THE RESPONSIBILITY OF THE CONTRACTOR TO PERFORM ALL NECESSARY CUTS AND FILLS WITHIN THE LIMITS OF THIS PROJECT AND THE RELATED OFF-SITE WORK, SO AS TO GENERATE THE DESIRED SUBGRADE, FINISH GRADES AND SLOPES. CONTRACTOR SHALL TAKE FULL RESPONSIBILITY FOR ALL EXCAVATION. ADEQUATE SHORING SHALL BE DESIGNED AND PROVIDED BY THE CONTRACTOR TO PREVENT UNDERMINING OF ANY ADJACENT FEATURES OR FACILITIES AND/OR CAVING OF THE EXCAVATION.
- THE GRADING CONTRACTOR IS RESPONSIBLE TO COORDINATE WITH THE OWNER TO PROVIDE FOR THE REQUIREMENTS OF THE PROJECT STORM WATER POLLUTION PREVENTION PLAN (SWPPP) AND ASSOCIATED PERMIT.
- CONTRACTOR SHALL GRADE TO THE LINES AND ELEVATIONS SHOWN ON THE PLANS WITHIN THE FOLLOWING HORIZONTAL AND VERTICAL TOLERANCES AND DEGREES OF COMPACTION, IN THE AREAS INDICATED:
- A. PAVEMENT AREA SUBGRADE 0.1'+
 B. ENGINEERED FILL 0.5'+
- - SEE SOILS REPORT SEE SOILS REPORT
- COMPACTION TESTING WILL BE PERFORMED BY THE OWNER OR HIS REPRESENTATIVE
- ALL CUT AND FILL SLOPES SHALL BE PROTECTED UNTIL EFFECTIVE EROSION CONTROL HAS BEEN ESTABLISHED.

- IN THE EVENT THAT ANY TEMPORARY CONSTRUCTION ITEM IS REQUIRED THAT IS NOT SHOWN ON THESE DRAWNISS, THE OWNER AGREES TO PROVIDE AND INSTALL SUCH ITEM AT HIS OWN EXPENSE AT THE DIRECTION OF THE CITY ENGINEER. TEMPORARY CONSTRUCTION INCLUDES DITCHES, BETHIS, FOAD SIGNS AND BARRICADES, THE OWNER AND THE PROVIDE AND THE CONSTRUCTION INCLUDES DITCHES, BETHIS, FOAD SIGNS AND BARRICADES, THE OWNER AND THE OWNER A

CITY OF LAS VEGAS SEWER NOTES

- ALL CONSTRUCTION AND MATERIALS SHALL BE IN ACCORDANCE WITH THE LATEST EDITION OF THE DESIGN AND CONSTRUCTION STANDARDS FOR WASTEWATER COLLECTION SYSTEMS AND THE UNIFORM STANDARD SPECIFICATIONS FOR PUBLIC WORKS' CONSTRUCTION OFF-SITE IMPROVEMENTS, CLARK COUNTY AREA, NEVEAD, AS AMENDED. IT WILL BE THE RESPONSIBILITY OF THE CONTRACTOR TO BE AWARE OF THE CONTENTS OF THE ABOVE SPECIFICATIONS.
- IT SHALL BE THE CONTRACTOR'S RESPONSIBILITY TO PERFORM CONSTRUCTION AS PER PLANS. ANY ADDITIONS, DELETIONS, OR CHANGES SHALL FIRST MEET WITH THE APPROVAL OF THE CITY ENGINEER.
- CHISEL "S" OR "G" IN CURBS WHERE SEWER OR GAS LATERALS PASS UNDER THE CURE
- POLYVINYL (PVC) SEWER PIPE SHALL MEET ASTM D-3034 SDR 35 SPECIFICATIONS, INSTALLED WITH SAND BEDDING AND BACKFILL OF TYPE II AGGREGATE BASE.
- ALL MANHOLES PAVED IN STREETS EIGHTY (80°) FOOT R/W AND LARGER SHALL HAVE CONCRETE COLLARS. STREETS LESS THAN EIGHTY (80°) FOOT R/W WILL REQUIRE RETROFIT IF PAVING DOES NOT CONFORM TO CITY STANDARDS AT THE MANHOLD.
- The saddles shall be used to connect sever laterals to existing main lines up to twelve inch (12") diameter. Connections to prifere inch (13") or larger mains shall require special procedures. In line "Y" is shall be used on lines twelve inches (12") or above.
- WATER MAINS SHALL BE PROTECTED IN ACCORDANCE WITH LVVWD STANDARDS WHENEVER A SEWER MAIN CROSSESS OVER A WATER MAIN OR THE SEWER IS LESS THAN EIGHTEEN INCH (18") UNDER A WATER MAIN.
- ALL CONTRACTORS INSTALLING SEWER MAINS THAT WALL BE UNDER THE JURISDICTION OF THE CITY OF LAS VEGAS MUST BE STATE OF NEVADA CLASS "A" CONTRACTORS.
- THE CITY OF LAS VEGAS WILL NOT ACCEPT ANY SEWER MAINS WHICH HAVE A VERTICAL DEFLECTION OF MORE THAN ONE TENTH (0.1) OF A FOOT FROM THE APPROVED CONSTRUCTION PLANS AT ANY LOCATION. SEWER MAINS FOUND TO EXCEED THIS TOLERANCE WILL HAVE TO BE REPAIRED OR REMOVED OR REPLACED TO THE SATISFACTION OF THE CITY ENGINEER PRIOR TO ACCEPTANCE BY THE CITY OF LAS VEGAS.
- INSTALLATION OF CURVED SEWER REQUIRES THE USE OF C-900 PVC PIPE WHICH ALLOWS FOR PIPE DEFLECTION AT THE JOINTS.

CITY OF LAS VEGAS FIRE DEPARTMENT NOTES

- ALL WORK SHALL BE DONE IN STRICT ACCORDANCE WITH THE CITY OF LAS VEGAS FIRE DEPARTMENT'S ORDINANCE # 5867, "HYDRANT SPECIFICATIONS", AND "HYDRANT INSTALLATION SPECIFICATION".

- D. U.S. PIPE METROFLOW/M-03
 E. TROY VALVE PATRIOT MODEL PTB100N NEVADA HYDRANT
- ON ANY RESIDENTIAL OR COMMERCIAL INSTALLATIONS FIRE HYDRANTS SHALL BE INSTALLED AND FIRE API ACCESS ROADS SHALL BE MAINTAINED <u>BEFORE</u> COMMENCEMENT OF ANY COMBUSTIBLE CONSTRUCTION. ALL FIRE HYDRANTS SHALL BE IN GOOD WORKING ORDER AND SHALL BE CAPABLE OF DELIVERING THE REQUIRED FIRE FLOW.
- TO IDENTIFY THE FIRE HYDRANT LOCATIONS, CONTRACTOR SHALL PLACE A BLUE REFLECTIVE MARKER AT THE CENTER
- PAINTING OF THE CURBS AND FIRE HYDRANTS AND ALL OTHER WORK NECESSARY AS REQUIRED BY ORDINANCE # 566 FOR THE PROTECTION OF FIRE HYDRANTS FROM PHYSICAL DAMAGE, SHALL BE COMPLETED BEFORE APPROVAL BY THE CITY OF LAS VEGAS FIRE DEPARTMENT.
- A PERMIT IS REQUIRED FROM THE CITY OF LAS VEGAS FIRE DEPARTMENT FOR THE ON-SITE WATER LINES AND FIRE HYDRANTS. THE PERMIT AND CONTRACTOR'S MATERIAL AND TEST CENTRICATE FOR UNDERGROUND PIPING FORM SHALL BE OBTAINED FROM THE FIRE PROTECTION ENGENEER BEDOGE COMMENCEMENT OF WORK.
- PRIOR TO THE FINAL OCCUPANCY, A FLOW TEST MUST BE WITNESSED BY THE CITY OF LAS VEGAS FIRE DEPARTMENT TO VERIFY AVAILABILITY OF THE REQUIRED FIRE FLOW.

- WHERE NEW WATER MAINS ARE EXTENDED ALONG STREETS OR NEW STREETS ARE INSTALLED WHERE FIRE HYDRANTS ARE NOT NEEDED FOR PROTECTION OF THE STRUCTURES, FIRE HYDRANTS SHALL BE INSTALLED AT MAXIMUM-1,000 FOOT SPACING, TO PROVIDE FOR TRANSPORTATION HAZARDS, WHERE STREETS ARE PROVIDED WITH MEDIAN DIVIDERS OR HAVE FOUR OR MORE TRAFFIC LAUSES AND HAVE A TRAFFIC COUNT OF MORE THAN JOLDON PER DAY, HYDRANTS ARE REQUIRED ON EACH SIDE OF THE STREET SPACED AT SOO FEET ON AN ALTERNATING BASIS.
- NO FIRE HYDRANTS SHALL BE LOCATED WITHIN THE REQUIRED RADIUS OF A CUL-DE-SAC OR WITHIN 20 FEET OF THE PERIMETER OF THE RADIUS OF THE CUL-DE-SAC.
- NO FIRE HYDRANT SHALL BE LOCATED WITHIN 6 FEET OF ANY CURB RETURN, DRIVEWAY, POWER POLE, STREET LIGHT OR ANY OTHER OBSTRUCTION.
- THE MAXIMUM DISTANCE FROM A FIRE HYDRANT TO A ONE—TWO FAMILY DWELLING SHALL NOT EXCEED 300 FEET, AS MEASURED BY AN APPROVED ROUTE.
- THE MAXIMUM DISTANCE FROM A FIRE HYDRANT TO A FIRE DEPARTMENT CONNECTION (FDC) SHALL NOT EXCEED 100 FEET, AS MEASURED BY AN APPROVED ROUTE.
- THE MAXIMUM DISTANCE FROM A FIRE HYDRANT TO THE END OF A DEAD-END STREET SHALL NOT EXCEED 200 FEET. TWO SOURCES OF SUPPLY ARE REQUIRED WHENEVER THERE ARE 4 OR MORE FIRE HYDRANTS/SPRINKLER LEAD—INS ARE INSTALLED OR SHOLE SYSTEM. SECTIONAL CONTROL VALVES SHALL BE INSTALLED SO THAT NO MORE THAN 2 FIRE HYDRANTS CAN BE OUT OF SERVICE UET TO A BREAK IN A WATER MAIN.
- ALL FIRE APPARATUS ACCESS ROADS SHALL BE PAVED TO PROVIDE ALL—WEATHER DRIVING CAPABILITIES, AND SHALL BE DESIGNED AND MAINTAINED TO SUPPORT THE IMPOSED LOADS OF THE FIRE APPARATUS.
- THE GRADIENT FOR THE FIRE APPARATUS ACCESS ROADS SHALL NOT EXCEED 12%. ANGLES OF APPROACH AND ANGLES OF DEPARTURE SHALL NOT EXCEED 6% FOR 25 FEET PRIOR TO OR AFTER THE GRADE CHANGE. AND ADJACENT TO HE STRUCTURES GRADIENT SHALL NOT EXCEED 6%.
- THE TURNING RADIUS OF THE FIRE APPARATUS ACCESS ROADS SHALL BE NO LESS THAN 52 FEET OUTSIDE AND $28\ \text{FEET}$ INSIDE TURNING RADIUS.
- FIRE DEPARTMENT ACCESS ROADS IN ALL RESIDENTIAL DEVELOPMENTS (EXCEPT FOR THE APARTMENT BUILDINGS) SHALL HAVE A MINIMUM UNOBSTRUCTED WIDTH OF NOT LESS THAN 36 FEET FLOW LUNE TO THE FLOW LINE (THIS WIDTH MAY BE REDUCED TO 24 FEET, IF ALL BUILDINGS FRONTING THE STREET ARE SPRINKLEED) FOR MAN RESIDENTIAL STREETS, WITH PARKING PERMITTED ON BOTH SIDES OF THE STREET. PRIVATE DRIVE ASLES, DRIVEWAYS, ETC. SHALL BE ALLOWED TO BE REDUCED TO A MINIMUM WIDTH OF 24 FEET WIDE FLOW UNE TO THE FLOW LINE WHEN SERVING NO MORE THAN 6 RESIDENCES, AND WHEN ON STREET PARKING IS DISALLORED.
- ALL FIRE APPARATUS ACCESS ROADS IN COMMERCIAL DEVELOPMENTS AND APARTMENT COMPLEXES SHALL HAVE A MINIMUM UNDESTRUCTED WIDTH OF NOT LESS THAN 24 FEET (FLOW LINE TO THE FLOW LINE), PROVIDED NO PARKING IS ALLOWED ON ETHER SDE; 25 FEET (FLOW LINE TO THE FLOW LINE) IF PARALLEL PARKING IS ALLOWED ON ONE SDE ONLY, AND 40 FEET (FLOW LINE TO THE FLOW LINE), IF PARALLEL PARKING IS ALLOWED ON BOTH SIDES. THESE WIDTHS MAY BE REDUCED BY 4 FEET IF ALL BUILDINGS ARE SPRINKLERED.
- A FIRE APPARATUS ACCESS ROAD SHALL BE REQUIRED WHEN ANY PORTION OF AN EXTERIOR WALL OF THE FIRST STORY IS LOCATED MORE THAN 150 FEET FROM A FIRE DEPARTMENT VEHICLE ACCESS. THIS DISTANCE COULD BE INCREASED TO 250 FEET IF THE BUILDING IS SPRINCLERED.
- APPROVED SECONDARY FIRE APPARATUS ACCESS SHALL BE PROVIDED FOR 100 OR MORE DWELLING UNITS, ROAD(S) WITH DEAD-ENDS OR WITH A SINGLE POINT OF ACCESS IN EXCESS OF 600 FEET, AND FOR ALL COMMERCIA INDUSTRIAL, AND MULTI-PAMILY RESIDENTIAL DEVELOPMENTS.
- ALL FIRE APPARATUS ACCESS ROADS SHALL BE MARKED BY PLACING APPROVED SIGNS AT THE START OF THE DESIGNATED FIRE LANE, ONE SIGN AT THE END OF THE FIRE LANE AND WITH SIGNS AT INTERVALS 10D FEET ALONG ALL DESIGNATED FIRE LANES. SIGNS TO BE PLACED ON BOTH SIDES OF AN ACCESS ROADWAY IF NEEDED
- to prevent parking on either side. Signs to be installed no higher than 10 feet or less than 6 feet from roadway leal. The core along or on the payement or cement if a curb is not provided shall be painted with a red weather, resistant paint in addition to the signs.
- ELECTRICALLY CONTROLLED ACCESS GATES SHALL BE PROVIDED WITH AN APPROVED EMERGENCY VEHICLE DETECTOR/RECEIVER SYSTEM. SAID SYSTEM SHALL BE INSTALLED IN ACCORDANCE WITH THE CITY OF LAS VEGAS GUIDELINES FOR AUTOMATIC EMERGENCY VEHICLE ACCESS GATES.

REVISED 03/19/04

CITY OF LAS VEGAS STREETLIGHT NOTES

1. ALL STREET LIGHTING INSTALLATIONS SHALL BE IN ACCORDANCE WITH THE STREET LIGHTING PLANS, THE "UNIFORM STANDARD SPECIFICATIONS FOR PUBLIC WORKS CONSTRUCTION OFF-SITE IMPROVEMENTS, CLARK COUNTY AREA, NEVADALATEST REVISION, AND THE "UNIFORM STANDARD DRAWINGS FOR PUBLIC WORKS CONSTRUCTION OFF-SITE IMPROVEMENT CLARK COUNTY AREA, NEVADA", LATEST REVISION.

- 4. ALL EMPTY CONDUIT SHALL HAVE PULL STRINGS INSTALLED PRIOR TO FINAL INSPECTION.
- 9. ANY STRUCTURE SUCH AS BLOCK WALLS, CHAIN LINK FENCES, RETAINING WALLS, ETC., SHALL LEAVE A MINIMUM CLEARANCE OF EIGHTEEN INCHES (16") TIO THE FACE OF STREET LIGHTING POLE ON ALL SIDES WHEN STREETLIGHT IS INSTALLED, BEHAND SIDEWALK, AND SHALL AT NO TIME COMPILETELY ENCOUSE THE STREET LIGHTING FOLE.
- 7. SERVICE POINT SHALL BE COORDINATED WITH NEVADA POWER COMPANY, AND WHEREVER POSSIBLE, BE LOCATED NEAR THE CENTER OF THE CIRCUIT. SERVICE POINTS SHALL BE SHOWN ON THE PLANS.
- 8. IT SHALL BE ASSUMED THAT IN THE ABSENCE OF AN EXISTING, WORKABLE CIRCUIT TO ATTACH TO, ALL INSTALLATIONS SHALL REQUIRE A NEW SERVICE FOR OPERATION OF THE CIRCUIT.
- 9. WHEREVER THERE IS AN OVERHEAD UTILITY THAT MAY CONFLICT WITH THE INSTALLATION OF STREET LIGHTING CIRCUITS AND/OR POLES, THESE CONFLICTS MUST BE RESOLVED BETWEEN THE OPERALOPER AND THE UTILITIES INVOLVED BEFORE STREET.
- 10. THE CONTRACTOR SHALL FURNISH COMPLETE SERVICE TO TRANSFORMERS AND CONTROL SYSTEMS IF REQUIRED ON PLANS.

LAS VEGAS VALLEY WATER DISTRICT STANDARD NOTES

I VAND PROJECT# .

- NO WORK SHALL BEGIN UNTIL THE WATER PLANS HAVE BEEN APPROVED FOR CONSTRUCTION BY THE LVVND. FOLLOWING WATER PLAN APPROVAL, NOTICE SHALL BE GIVEN TO THE LVVND COMMUNICATION SUPPORT CENTER (288—717) TWO (2) WORKING DAYS PRIOR TO THE STRAT OF CONSTRUCTION. FOR FUTURE INSPECTIONS, NOTICE MUST BE GIVEN BY 2:00 P.M. THE BUSINESS DAY PRIOR TO THE REQUESTED LVVND
- WHEN REQUESTING INSPECTIONS, PLEASE REFER TO THE PROJECT # IDENTIFIED ABOVE. ALL WORK SHALL CONFORM TO LYWWD STANDARD PLATES, DRAWINGS, AND SPECIFICATIONS, AND TO THE 2003 EDITION OF THE UNIFORM DESIGN AND CONSTRUCTION STANDARDS FOR POTABLE WATER SYSTEMS
- ALL WORK, EXCEPT AS MODIFIED BY THESE PLANS OR BY NOTE 2 ABOVE, SHALL BE DONE IN ACCORDANCE WITH THE MOST RECENT DRAFF OR EDITION OF THE UNFORM STANDARD SPECIFICATION FOR PUBLIC WORKS CONSTRUCTION OFFSITE IMPROVEMENT, CLARK COUNTY AREA.
- 4. A SINGLE PIPE MATERIAL SHALL BE USED THROUGHOUT THE PROJECT UNLESS OTHERWISE APPROVED BY
- ALL SERVICE LATERALS TWO (2) INCHES IN DIAMETER AND SMALLER SHALL BE TYPE K COPPER TUBING WITH LVVWD APPROVED SERVICE SADDLES.
- . ALL WATER METER BOXES SHALL BE LOCATED OUTSIDE OF DRIVEWAY AREAS.
- . THE YOUNGS SHALL BE LOCATED OUTSIDE OF DRIVEWAYS, VALLEY AND CURB GUTTERS.
- 3, ALL WATER AND STORM DRAIN OR SANITARY SEWER CROSSINGS SHALL CONFORM TO SECTION 2.19 OF THE 2003 EDITION OF THE UDACS.
- ALL WATER FACILITIES SHALL BE FILLED, DISINFECTED, PRESSURE TESTED, FLUSHED, FILLED, AND AN ACCEPTABLE WATER SAMPLE OBTAINED, PRIOR TO CONNECTION TO THE LYVNO DISTRIBUTION SYSTEM.
- 10. THE CONTRACTOR MUST OBTAIN ALL METERS TWO (2) INCHES AND SMALLER FROM LVVWO CENTRAL STORES. TELEPHONE 258-3152 OR 258-3802, TWO (2) WORKING DAYS PRIOR TO METER PICKUP.
- ANY INTERRUPTION OF SERVICE MUST BE APPROVED BY THE LVYWO INSPECTION DIVISION PRIOR TO SHUTDOWN, PROPER WRITTEN NOTIFICATION MUST BE GIVEN TO ALL AFFECTED CUSTOMERS.
- 12. ALL WATER FACILITY CONSTRUCTION MATERIALS USED MUST BE AS LISTED ON THE LVWID PRE—APPROV.
 MATERIALS AND MANUFACTURER'S LISTING FOR NEW FACILITIES, LATEST REVISION, OR SPECIFICALLY APP ON THESE PLANS.
- 13. TELEPHONE "CALL BEFORE YOU DIG" AT 1-800-227-2600.

LAS VEGAS VALLEY WATER DISTRICT

DATE

CITY OF LAS VEGAS TRAFFIC NOTES

- ALL CONSTRUCTION SIGNING, BARRICADING AND TRAFFIC DELINEATION SHALL CONFORM TO THE "MANUAL ON UNIFORM TRAFFIC DEVICES", LATEST EDITION.

- WHEN A DESIGNATED "SAFE ROUTE TO SCHOOL" IS ENCROACHED UPON BY A CONSTRUCTION WORK ZONE AND PUBLIC WORKS STAFF IDENTHES A NEED FOR STUDENTS TO BE ASSISTED IN THE SAFE CROSSING THAT THAT WORK ZONE, THE CONTRACTOR SHALL BE REQUIRED TO PROVIDE A QUALIFED "CROSSING GLARD". THE CHILD PRESENT FOR THE FULL DURATION OF TIME THAT CHILDREN ARE LIKELY TO BE PRESENT.
- 6. THE CONTRACTOR SHALL BE RESPONSIBLE FOR PROMOTING AND INSTALLING ALL PERMANENT SIGNS SHO ON THE PLANS. STREET NAMES SIGNS SHALL CONFORM IN THEIR ENTIRETY TO CURRENT CITY STANDAR ALL OTHER SIGNS SHALL BE STANDARD SIZE UNLESS OTHERWISE SPECIFIED ON THE PLANS. ALL SIGN F SHALL BE INSTALLED IN ACCORDANCE WITH THE CURRENT CITY STANDARDS.
- WHEN A PROPOSED STREET LIGHT STANDARD IS LOCATED WITHIN FIVE (5') FEET OF ANY PROPOSED SIGN SHOWN ON THE PLANS TO BE MOUNTED ON A SHOPPOST, THE SIGN SHALL BE MOUNTED ON THE STREET LIGHT STANDARD AND THE SIGNOST SHALL BE ELIMINATED.
- B. ALL PERMANENT TRAFFIC CONTROL DEVICES CALLED FOR HEREON SHALL BE IN PLACE AND IN FINAL POSITIO PRIOR TO ALLOWING ANY PUBLIC TRAFFIC ONTO THE PORTIONS OF THE ROAD(S) BEING IMPROVED HERELINDER, REGARDLESS OF TEN STATUS OF COMPLETION OF PAVING OR OTHER OFF-SITE IMPROVEMENTS CALLED FOR THESE PLANS.
- STREET SIGNS AND STOP SIGNS SHALL BE INSTALLED PER CITY STANDARD SPECIFICATIONS FOR PLACEMENT OF STREET NAME SIGNS.
- THE CONTRACTOR SHALL PROVIDE ALL NECESSARY TRAFFIC CONTROL DEVICES AND FLAGGERS TO ENSURE THE SAFETY OF THE PUBLIC IN OR AROUND THE WORK AREA. THE CONTRACTOR SHALL HAVE A CERTIFIED ATSSA TRAFFIC CONTROL I TECHNICIAN OR INSA WORK ZONE SAFETY SEFEALIST SET-UP, MAINTAIN AND, REMOVE ALL TRAFFIC CONTROL DEVICES IN THE CITY OF LAS VEGAS RIGHTS OF WAY.
- WORK IN THE PUBLIC STREETS, ONCE BEGUN, SHALL BE EXPEDITED TO COMPLETION SO AS TO PROVIDE MINIMUM INCONVENIENCE TO ADJACENT PROPERTY OWNERS AND TO THE TRAVELING PUBLIC.
- 12. THE CONTRACTOR SHALL BE RESPONSIBLE FOR NOTIFYING CITIZENS AREA TRANSIT (C.A.T.) IF THE CONSTRUCTION INTERRUPTS OR RELOCATES A BUS STOP OR HAS AN ADVERSE EFFECT ON BUS SERVICE ON THAT STREET TO ARRANGE FOR TEMPORARY RELOCATION OF STOP.
- 13. GUARDS SHALL BE OBTAINED BY CONTACTING THE METROPOLITAN POLICE DEPARTMENT SPECIAL EVENTS UNIT (PHONE NO: 229-3442) WHO WILL PROVIDE OFFICERS PROPERLY TRAINED IN TRAFFIC CONTROL FEES FOR THE USE OF THESE OFFICERS SHALL BE SET UP BY METRO AND WILL BE PAID BY THE CONTRACTOR. THE CONTRACTOR IS RESPONSIBLE FOR ALL ARRAMCEMENTS WITH METRO.
- 14. ANY WORK WITHIN 300' OF A SIGNALIZED INTERSECTION WILL BE NIGHT WORK, UNLESS DIRECTED BY THE CITY OF LAS VEGAS TRAFFIC ENGINEER.

DEVIATION FROM STANDARDS

BASIS OF BEARING

SOUTH 00'32'07" EAST, BEING THE BEARING OF THE CENTERLINE OF "RAMPART BOULEAND" AS SHOWN BY MAP THEREOF ON FILE IN FILE OF PARTY OF THE CONTROL OF THE IN FILE OCUMENT, NEVADA, LYING WITHIN THE NORTH HALF (N 1/2) OF SECTION 32, TOWNSHIP 20 SOUTH, RANGE SO EAST, M.D.M., CITY OF LAS YEAR

BENCHMARK

RIVET AND PLATE IN TOP OF CURB & TOWN CENTER AND VILLAGE CENTER ON WEST EDGE OF ROUNDABOUT.

CITY OF LAS VEGAS BENCHMARK OLVOD 32E6 LOCATED ON THE NORTHEAST CORNER OF ALTA DR. AND UPPER HILL. NAVO 88 ELEVATION = 814.1281 MEDERS, 267-102 FEET SUMMERLIN ELEVATION: 2726.11 FEET NOTE: ADD 2.27' TO THE CURRENTLY USED SUMMERLIN BENCHMARK TO EQUAL TO THE APPROVED CITY OF LAS VEGAS BENCHMAR

LEGEND AND ABBREVIATIONS

ABBREVIATIONS (1) DETAIL DRAWING NUMBER SS = SEWER G = GAS SD = STORM DRAIN DRAWING NUMBER FOR DETAIL WITH REFERENCE TO IT'S SHEET SD = STORM BRAIN SL = STREET LIGHT SMH = SEWER MANHOLE DMH = STORM DRAIN MH INDICATES SEWER MANHOLE IN PROFILE

60.5 PROPOSED ELEVATION (2356.1) EXIST. SPOT ELEVATION 160.5] AS-BUILT ELEVATION

- SUBDIVISION BOUNDAR --- FUTURE LINE --- STREET CENTERLINE CONCRETE CURB & GUTTER

INDICATES STORM DRAIN

MANHOLE IN PROFILE

(60.5) EXIST. ELEVATION

EXISTING ASPHALT (2612) EXISTING GROUND CONTOURS

54 FINISH GROUND CONTOUR DRAINAGE FLOW LINE RETAINING WALL EXISTING BLOCK WALL 50 EXISTING LOT NUMBER

. 50 LOT NUMBER PAD=100.0 F.F.=100.67 PAD ELEVATION FINISH FLOOR ELEVATION

SCARP (00.0) EXISTING PAD ELEVATION

> 1 BLOCK NUMBER

> > Call

Dig

before you

SDMH = STORM DRAIN MH
CLV = CITY OF LAS VEGAS
LVVWD = LAS VEGAS VALLEY
WATER DISTRICT

EX = EXISTING

FL = FLOW LINE

HP = HIGH POINT

R/W = RIGHT-OF-WAY

TC = TOP BACK OF CURB

FG = FINISHED GRADE BCR = BEGIN CURB RETURN DS = DOWN SPOUT DRAWING CLARK COUNTY AREA

CF = CURB FACE BW = BACK OF WALK NG = NATURAL GRADE FF = FINISH FLOOR GB = GRADE BREAK

GB = GRADE BREAK
FUT = FUTURE
EP = EDGE OF PAVEMENT
NP = NEVADA POWER
DACS = UNIFORM DESIGN
AND CONSTRUCTION
STANDARDS
TR = TOP OF RETAINING
ENC. = EEDC.

HDPE = HIGH DENSITY POLYEHTYLENE

. C. WALLACE, INC. ngineers/Planners/Surveyo

유 턴 ள

ਰ

QUEENSPIDGE GENERAL ΑŢ

1-702-455-7511 1-702-229-6611 CLV DWG #

UnderGround

DRAWING

C-2

AVOID HITTING OVERHEAD POWER LINES. IT'S COSTLY 1-800-227-2600 1-702-227-2929

KEYMAP

STORM DRAIN QUANTITIES (PUBLIC)

12'x12' RCB HEADWALL
TYPE II GRAVEL BASE.

4" ASPHALTIC CONCRETE PAVING.

DRAINAGE CERTIFICATION

I CERTIFY THIS GRADING PLAN IS IN CONFORMANCE WITH THE APPROVED DRAINAGE STUDY ON FILE WITH THE CITY OF LAS VEGAS FOR THIS PROJECT, DS 3674.ZNA.

BASIS OF BEARING

SOUTH 0032'07" EAST, BEING THE BEARING OF THE CENTERLINE OF "RAMPART BOULEVARD" AS SHOWN BY MAP THEREOF ON FILE IN FILE A. PAGE 93 OF SUPPLYES IN THE COUNTY RECORDER'S OFFICE, CLARK COUNTY, NEWADA, LYING WITHIN THE NORTH HALF (N 1/2) OF SECTION 32, TOWNSHIP 20 SOUTH, RANGE 60 EAST, M.D.M., CITY OF LAS VEGAS, CLARK COUNTY, NEVADA.

BENCHMARK

RIVET AND PLATE IN TOP OF CURB & TOWN CENTER AND VILLAGE CENTER ON WEST EDGE OF ROUNDABOUT.

CITY OF LAS VEGAS BENCHMARK OLVOD 32ES .OCATED ON THE NORTHEAST CORNER OF ALTA DR. AND UPPER HILL VAVD 8B ELEVATION = 814.1281 METERS, 2671.02 FEET SUMMERLIN ELEVATION: 2726.11 FEET

NOTE: ADD 2.27' TO THE CURRENTLY USED SUMMERLIN BENCHMARK TO EQUAL TO THE APPROVED CITY OF LAS VEGAS BENCHMAN

Avoid cutting underground utility lines. It's costly. Call before you Dig. 1-800-227-2600

Call before you Under Ground 1-702-455-7511 1-702-229-6611

C-3

ASPIDOE CULVERT

WILLAGE AT QUE

G.C. Engine

MASTER GRADING PLAN

SCALE 1"=40"

BASIS OF BEARING

SOUTH 00'32'07" EAST, SEING THE BEARING OF THE CENTERLINE OF "RAMPART BOULEVARD" AS SHOWN BY MAP THEREOF ON FILE IN FILE 64, PAGE 93 OF SURVEYS IN THE COUNTY, ENCORDER'S OFFICE, CLARK COUNTY, NEVADA, LYING WITHIN THE NORTH HALF (N 1/2) OF SECTION 32, TOWN-SHIP 20 SOUTH, RANGE 60 EAST, M.D.M., CITY OF LAS VEGAS CLARK COUNTY, NEVADA.

BENCHMARK

CITY OF LAS VEGAS BENCHMARK OLVOO 32E6 LOCATED ON THE NORTHEAST CORNER OF ALTA DR. AND UPPER HILL NAVO 88 ELEVATION = 814.1281 METERS, 2671.02 FEET SUMMERLIN ELEVATION: 2728.11 FEET

NOTE: ADD 2.27' TO THE CURRENTLY USED SUMMERLIN BENCHMARK TO EQUAL TO THE APPROVED CITY OF LAS VEGAS BENCHMAR

GRADING CONSTRUCTION NOTES

CONTRACTOR TO MATCH TO EXISTING 2-12'x12' RCB CULVERT. CONSTRUCT 2-12'x12' RCB CULVERT PER NDOT DETAIL B-20.1.3 & TRENCH RCB SECTION PER DETAIL 1, SHEET C-7. CONTRACTOR TO FIELD VERIFY LOCATION OF EXISTING 80" RCP.

4) INSTALL 60" STORM BRAIN MANHOLE PER CLARK COUNTY STANDARD DRAWING #403.

5) INSTALL 24" CLASS V RCP STUB PER DETAIL 2, SHEET C-7. 8 INSTALL 24" CLASS IV ICP STUB PER DETAIL 2, SHEET C-7.

7) INSTALL EQUALIZATION CHAMBER PER DETAIL A, SHEET C-7. 8 CONTRACTOR TO HELD VERIFY LOCATION OF EXISTING 18" RCP. © CONSTRUCT RCB CULVERT TYPE I HEADWALLS PER NDOT DETAIL B-20.1.5.

(10) NOT USED

(11) CONSTRUCT LATERAL PER DETAIL 2, SHEET C-7. (12) CONCRETE PAD PER DETAIL "C" SHEET C-7.

NOTE THIS PROJECT SITE IS LOCATED WITHIN "THE LIMITS OF EXISTING FLOOD ZONE A"

Avoid cutting underground utility shee, it's costly. Call before you Dig. 1-800-227-2600

UnderGround

THE VILLAGE AT QUEENSRIDGE CULVERT

C-4

BASIS OF BEARING

SOUTH 00°32'07" EAST, BEING THE BEARING OF THE CENTERLINE OF "RAMPART BOULEVARD" AS SHOWN BY MAP THEREOF ON FILE IN FILE OF A PAGE 35 OF SURVEYS IN THE COUNTY RECORDER'S OFFICE, CLARK COUNTY, NEVADA, LYNG WITHIN THE NORTH HALF (N 1/2) OF SECTION 32, TOWNSHIP 20 SOUTH, RANGE 80 EAST, M.D.M., CITY OF LAS VEGA CLARK COUNTY, NEVADA.

BENCHMARK

RIVET AND PLATE IN TOP OF CURB © TOWN CENTER AND VILLAGE CENTER ON WEST EDGE OF ROUNDABOUT.

CITY OF LAS VEGAS BENCHMARK 0LV00 32E6 LOCATED ON THE NORTHEAST CORNER OF ALTA DR. AND UPPER HILL NAVO 88 ELEVATION = 81.7281 METERS, 2671.02 FEET SUMMERLIN ELEVATION: 2726.11 FEET

TE: ADD 2.27' TO THE CURRENTLY USED SUMMERUN BENCHMARK TO EQUAL TO THE APPROVED CITY OF LAS VEGAS BENCHMAN

GRADING CONSTRUCTION NOTES

- CONTRACTOR TO MATCH TO EXISTING 2-12'x12' RCB CULVERT. CONSTRUCT 2-12'x12' RCB CULVERT PER NDOT DETAIL 8-20.1.3
 & TRENCH RCB SECTION PER DETAIL 1, SHEET C-7. Contraction of Education Fig. Section, Section 66° RCP.
 INSTALL 60° STORM DRAIN MANHOLE PER NDOT DETAIL R-4.7.1, OR CLARK COUNTY STANDARD DRAWING \$403.

 | NSTALL 24° CLASS V RCP STUB PER DETAIL 2, SHEET C-7.
- 6) INSTALL 24" CLASS IV RCP STUB PER DETAIL 2, SHEET C-7.
- 7) INSTALL EQUALIZATION CHAMBER PER DETAIL A, SHEET C-7. $\overline{8}$ contractor to field verify location of existing 18" rcp. G CONSTRUCT ROB CULVERT TYPE I HEADWALLS PER NDOT DETAIL B-20.1.5.
- 10 NOT USED
- (11) CONSTRUCT LATERAL PER DETAIL 2, SHEET C-7. (12) CONCRETE PAD PER DETAIL "C" SHEET C-7.

12' X 12' BOX IS DESIGNED FOR MAX 20' OF FILL PER NEVADA DEPARTMENT OF TRANSPORTATION STANDARDS

NOTE

THIS PROJECT SITE IS LOCATED WITHIN "THE LIMITS OF EXISTING FLOOD ZONE A

Avoid cutting underground utility lines, the coeffy. Call before_you Dig. 1-800-227-2600

THE VILLAGE AT QUEENSRIDGE CULVERT UnderGround

C-5

- NOUES

 1. AMQLE "A" SHALL BE BETWEEN 45' AND 90'.

 2. DIMENSION "0" SHALL BE EQUAL TO OR LESS THAN 1/2 THE INSIDE DIAMETER OF THE MAINLINE PIPE.

 3. DIMENSION "X" SHALL BE 1" MINIMUM AND 3" MAXAMUM.

 4. BURN OR CHIP END O
- 5. REFER TO STRUCTURAL DRAWINGS FOR ADDITIONAL REINFORCEMENT IN RCB WALL.

PIPE TO RCB JUNCTION STRUCTURE DETAIL 2

BASIS OF BEARING

SOUTH 00'32'07" EAST, BEING THE BEARING OF THE CENTERLINE OF "RAMPART BOULEVARD" AS SHOWN BY MAP THEREOF ON FILE IN FILE 46, PAGE 93 OF SURVEYS IN THE COUNTY RECORDER'S OFFICE, CLARK COUNTY, NEVADA, LINIG WITHIN THE NORTH HALF (N 1/2) OF SECTION 32, TOMSHIP 20 SOUTH, RANGE 66 EAST, M.D.M., CIT' OF LAS VEGAS, CLARK COUNTY, NEVADA.

BENCHMARK

RIVET AND PLATE IN TOP OF CURB ® TOWN CENTER AND VILLAGE CENTER ON WEST EDGE OF ROUNDABOUT.

CITY OF LAS VEGAS BENCHMARK OLVOO 32E6 LOCATED ON THE NORTHEAST CORNER OF ALTA DR, AND UPPER HILL NAVD 88 ELEVATION = 814.1281 METERS, 2671.02 FEET SUMMERLIN ELEVATION: 2726.11 FEET

NOTE: ADD 2.27' TO THE CURRENTLY USED SUMMERLIN BENCHMARK TO EQUAL TO THE APPROVED CITY OF LAS VEGAS BENCHMAR

Avoid cutting underground utility lines. It's costly. Call before you 1-800-227-2600

VILLAGE AT QUEENSRIDGE (Call UnderGround 1-702-455-7511 1-702-229-6611

DRAWING C-7

DESIGN:
DRAWN:
CHECK:
ISSUE C
ISSUE R
PLOT C

WALLACE, INC. eers/Planners/Surveyce H RANBOW BUD, ALS VEGAS, NEWAD 85 E. (702) 804-2000 • FAX. (702) 804-3

G.C. Enginee

DETAILS SHEET

CULVERT

NOTE THIS PROJECT SITE IS LOCATED WITHIN "THE LIMITS OF EXISTING FLOOD ZONE A" Djg.

BASIS OF BEARING

OTY OF LAS VEGAS BENCHMARK CLV00 3256

CLOATED ON THE NORTHEAST CORNER OF ALTA DR. AND UPPER HILL

AND 88 ELEVATION = 814.1281 METERS, 2871.02 FEET

SUMMERUIN ELEVATION: 2725.11 FEET

AUTE: ADD 2.27 TO THE CURRENITY USED SUMMERUIN BENCHMARK

TO EQUAL TO THE APPROVED CITY OF LAS VEGAS BENCHMARK

Call before you Dig. 1-800-227-2600

Avoid outting underground utility lines. It's costly.

DRAWING C-8

THE VILLAGE AT QUEENSRIDGE CULVERT

JAMA ARCHITECTURE STUDIOS

DETAILS SHEET

NOTE

THIS PROJECT SITE IS LOCATED WITHIN "THE LIMITS OF EXISTING FLOOD ZONE A

BASIS OF BEARING

SOUTH 00'32'07" EAST, BEING THE BEARING OF THE CENTERLINE OF "RAMFART BOULEVARD" AS SHOWN BY MAP THEREOF ON FILE IN FILE 64, PAGE 93 OF SURVEYS IN THE COUNTY RECORDER'S OFFICE, CLARK COUNTY, NEVADA, LYING WITHIN THE NORTH HALF (N 1/2) OF SECTION 32, TOWNSHIP 20 SOUTH, RANGE 60 EAST, M.D.M., CITY OF LAS VEGAS CLARK COUNTY, NEVADA.

#4 @ 12" O.C. BOTH WAYS

ACCESS ROAD DETAIL SECTION 'A'

RIVET AND PLATE IN TOP OF CURB @ TOWN CENTER AND VILLAGE CENTER ON WEST EDGE OF ROUNDABOUT.

CITY OF LAS VEGAS BENCHMARK OLVDO 32E6 LOCATED ON THE NORTHEAST CORNER OF ALTA DR. AND UPPER HILL NAVO 88 ELEVATION = 511.1281 METERS, 2671.02 FEET SUMMERLIN ELEVATION: 2726.11 FEET

HOTE: ADD 2.27 TO THE CURRENTLY USED SUMMERLIN BENCHMARK TO EQUAL TO THE APPROVED CITY OF LAS VEGAS BENCHMAR

NOTE
THIS PROJECT SITE IS
LOCATED WITHIN "THE LIMITS
OF EXISTING FLOOD ZONE A".

G. C. WALLACE, INC. Engineers/Planners/Surveyors ses soun engineers/Planners/Surveyors

DESIGN:
DRAWN:
CHECK:
ISSUE DA
ISSUE ET
PLOT TIN

THE VILLAGE AT QUEENSHIDGE CULVERT

C-9

1-800-227-2600

LALE EFFORT VILLE TO SECOND LA COLLEGE OF THE POPULATION OF THE PO 1-702-455-7511 1-702-229-6611

1-702-227-2929

Call before you Dig.

CLV DWG # 107Y-4889-CUL

CONSTRUCT LATERAL PER DETAIL 2, SHEET C-7. (12) CONCRETE PAD PER DETAIL "C" SHEET C-7. 6" CLASS "A" CONCRETE, #4 BARS
12" O.C. BOTH WAYS AT THE CENTER
OF SLAB. SEE DETAIL ON SHEET C-9.

GRADING CONSTRUCTION NOTES

CONSTRUCTION NOTES

CONSTRUCT 2-12*12* RCB
CONSTRUCT 2-12*12* RCB
COLVERT PER NOTO DETAIL
B-20.1.3 & ITENDI RCB
SECTION PER DETAIL, I, SHEET
C-7.

CONSTRUCT 2-12*12* RCB
COLVERT PER NOTO DETAIL
B-20.1.3 & ITENDI RCB
SECTION PER DETAIL
C-7.

CONTRACTOR TO FIELD VERIEY
LOCATION OF EVISTING 60" RCP.
INSTALL 60" STORM DRAIN
MARHOLE PER CLARK COUNTY
STANDARD BRAINING PART
REPORTAIL 2.4" CLASS V RCP STUB
PER DETAIL 2.4" CLASS V RCP STUB
PER DETAIL 2.4" CLASS V RCP
STUB
PER DETAIL 2.4" CLASS V RCP
STUB
PER DETAIL 2.4" CLASS V RCP
CONTRACTOR TO FIELD VERTY
CONTRACTOR TO FIELD VERTY
CONTRACTOR TO FIELD VERTY
LOCATION OF EXSTING 16" RCP.
CONSTRUCT RCB CULVERT TYPE I
HEADWALLS PER NOOT DETAIL
B-20.1.5.

(D) NOT USED

10 NOT USED

2622 DATUM ELEV 2619.00

FLOOD HYDROGRAPH PACKAGE (HEC-1) JUN 1998 VERSION 4.1 RUN DATE 23JUN08 TIME 10:11:08 ***********

U.S. ARMY CORPS OF ENGINEERS HYDROLOGIC ENGINEERING CENTER 609 SECOND STREET DAVIS, CALIFORNIA 95616 (916) 756-1104 **********

THIS PROGRAM REPLACES ALL PREVIOUS VERSIONS OF HEC-1 KNOWN AS HEC1 (JAN 73), HEC1GS, HEC1DB, AND HEC1KW.

THE DEFINITIONS OF VARIABLES -RTIMP- AND -RTIOR- HAVE CHANGED FROM THOSE USED WITH THE 1973-STYLE INPUT STRUCTURE. THE DEFINITION OF -AMSKK- ON RM-CARD WAS CHANGED WITH REVISIONS DATED 28 SEP 81. THIS IS THE FORTRAN77 VERSION NEW OPTIONS: DAMBERAK OUTFLOW SUBMERGENCE , SINGLE EVENT DAMAGE CALCULATION, DSS: WRITE STAGE FREQUENCY, DSS: READ TIME SERIES AT DESIRED CALCULATION INTERVAL LOSS RATE: GREEN AND AMPT INFILTRATION KINEMATIC WAVE: NEW FINITE DIFFERENCE ALGORITHM

```
HEC-1 INPUT
                                                                                                                                                                                                                                                                                                                                                                                  PAGE 1
1
                                                                                      ID.....1.....2.....3.....4.....5.....6.....7.....8.....9.....10
                                    LINE
                                                                                      *DIAGRAM
   *** FREE ***
                                                                                                        CLARK COUNTY REGIONAL FLOOD CONTROL DISTRICT 2008 MASTER PLAN UPDATE GOWAN WATERSHED (ALL)
RECOMMENDED DRAINAGE SYSTEM WITH ULTIMATE DEVELOPMENT INPUT FILE = ALLGOW3.DAT
INPUT FILE = ALGOW3.DAT
INPUT FILE DATE = MAY 5, 2008
DESIGN STORM = 100-YEAR 6-HR STORM
STORM DISTRIBUTION = SDN #3
MODELED BY PBS&J (MICHELE L. D'ALESSANDRO, E.I., CFM)
CHECKED BY PBS&J (HARSHAL B. DESAI, P.E., CFM)
STORM CENTERING = FULL WATERSHED
                                                                                      ID
ID
ID
ID
                                          REFERENCED HYDROLOGIC MODELS:
CITY OF LAS VEGAS CITY WIDE HYDROLOGY ANALYSIS (PBS&J 1997)
NORTHWEST NEIGHBORHOOD STUDY PHASE 1 (PBS&J 1997)
RESPONSE TO COMMENTS ON THE 2006 SUMMERLIN WEST PLANNING AREA FLOOD
CONTROL MASTER PLAN UPDATE (G.C. WALLACE 2006)
3RD RESPONSE TO COMMENTS ON THE 2006 SUMMERLIN WEST PLANNING AREA FLOOD
CONTROL MASTER PLAN UPDATE (G.C. WALLACE 2006)
SUPPLEMENT FOR THE 2006 SUMMERLIN WEST PLANNING AREA FLOOD CONTROL
MASTER PLAN UPDATE (G.C. WALLACE 2006)
GOWAN OUTFALL - LONE MOUNTAIN BRANCH PRELIMINARY DESIGN REPORT
(G.C. WALLACE 2007)
LONE MOUNTAIN WESTERN BELTWAY DETENTION BASIN PARAMETERS (RECEIVED
FROM G.C. WALLACE ON JANUARY 31, 2008)
US 95/RANCHO FIS RESTUDY (PBS&J 1998)
JR CARDS CONTAIN DARFS BASED ON THE FOLLOWING VALUES:
                                                                                      ID ID ID ID ID ID ID ID
                                                                                      ID
ID
                                                                                      ID ID ID ID ID ID
                                                                                                                                                                                   AREA
                                                                                                                                                                                                            DARF
                                                                                                                                                                                  AREA
SQ. MI.
0-0.5
0.5-1
1-2
2-3
3-4
4-5
5-6
6-7
7-8
                                                                                                                                                                                                            0.99
0.975
0.95
0.925
0.915
0.908
0.903
0.895
0.885
                                                                                      ID
ID
ID
ID
                                                                                      ID
ID
                                                                                                   JR CARD RATIOS REPRESENT DEPTH-AREA REDUCTION FACTORS (DARF'S)
                                                                                                   100-YEAR. 6-HOUR STORM.
                                                                                                                                                                                        SDN3
                                                                                      TD
                                                                                      ID
IT
IO
                                                                                                                                                                                            650
                                                                                      IN
                                                                                                          PREC
                                                                                                                                   0.99
                                                                                                                                                          0.975
                                                                                                                                                                                         0.95 0.925 0.915 0.908 0.903 0.895
                                                                                                                                                                                                                                                                                                                                                  0.885
                                                                                                                                                                                         HEC-1 INPUT
                                                                                                                                                                                                                                                                                                                                                                                  PAGE 2
1
                                                                                      ID......1......2......3......4......5......6......7......8......9......10
                                    LINE
                                                                                                  LV29-C
0.277
2.80
                                           48
49
50
51
52
53
54
55
55
56
57
89
60
                                                                                      KK BA PB PC PC PC PC PC PC LS UD
                                                                                                     0.13
0.19
0.251
0.499
0.86
0.982
0.998
                                                                                                                                0.02
0.13
0.197
0.256
0.59
0.868
0.985
0.999
                                                                                                                                                          0.057
0.13
0.199
0.27
0.71
0.876
0.987
                                                                                                                                                                                     0.07
0.133
0.2
0.278
0.744
0.888
0.989
                                                                                                                                                                                                               0.087
0.14
0.201
0.281
0.781
0.91
0.99
                                                                                                                                                                                                                                         0.108
0.142
0.204
0.283
0.812
0.926
0.993
                                                                                                                                                                                                                                                                     0.124
0.148
0.214
0.295
0.819
0.937
0.993
                                                                                                                                                                                                                                                                                               0.13
0.158
0.229
0.322
0.835
0.95
0.994
                                                                                                                                                                                                                                                                                                                         0.13
0.172
0.241
0.352
0.851
0.97
                                                                                                                                                                                                                                                                                                                                                       0.13
                                                                                                                                                                                                                                                                                                                                                    0.13
0.181
0.249
0.409
0.856
0.976
0.998
                                                                                                                                                                                                                                                                                                                         0.97
                                                                                                      0.409
                                                                                      KK RLV29-C
KM ROUTE LV29-C TO CLV30-C
KM FACILITY = GOWAN - TENAYA BRANCH
KM FACILITY # = GOTE 0000
```

	1850 1851	KM CONVERTED TO MUSKINGUM-CUNGE TO ACHIEVE STABILITY RD 1559 0.02 0.04 0 TRAP 100 3	
1	LINE	HEC-1 INPUT ID	PAGE 50
DOMA -			
Begin Reference	1852 1853 1854 1855 1856	KK SW11 BA 0.589 PB 3.34 LS 0 87.8 UD 0.311	
	1857 1858 1859 1860 1861 1862	KK RSW11 KM ROUTE SW11 TO CSW17 KM FACTLITY = ANGEL PARK - CHARLESTON BOULEVARD KM FACTLITY # APCB 0064, 0080 KM LINING = RCB RD 2338 0.0167 0.015 0 TRAP 7 0	
	1863 1864 1865 1866 1867	KK SW17 BA 0.356 PB 3.30 LS 0 87.8 UD 0.271	
	1868 1869 1870	KK CSW17 KM COMBINE RSW11 AND SW17 HC 2	
	1871 1872 1873 1874 1875 1876	KK RCSW17 KM ROUTE CSW17 TO CSW18 KM FACILITY = ANGEL PARK - CHARLESTON BOULEVARD KM FACILITY # = APCB 0000,0001,0019,0050 KM LINING = RCB RD 3600 0.014 0.015 0 TRAP 11 0	
	1877 1878 1879 1880 1881	KK SW18 BA 0.405 PB 3.27 LS 0 86.8 UD 0.271	
	1882 1883 1884	KK CSW18 KM COMBINE RCSW17 AND SW18 HC 2 *	
1	1885 1886 1887 1888 1889 1890 1891	KK RCSW18 KM ROUTE CSW18 TO C12A KM FACILITY = ANGEL PARK SOUTH KM FACILITY # = APSO 0254,0255,0258,0345,0346; APCB 0000 KM NATURAL WASH KM LENGTH = 5,200 KM SLOPE = 1.4% HEC-1 INPUT	PAGE 51
-	LINE	ID12345678910	
	1892 1893 1894 1895	KM N = 0.040 KM HYDRAULIC RADIUS = 1.5 KM VELOCITY = 9.2 RM 2 0.157 0.15	
	1896 1897 1898 1899 1900	KK 12A BA 0.392 PB 3.20 LS 0 91.2 UD 0.264	
	1901 1902 1903	KK C12A KM COMBINE 12A AND RCSW18 HC 2	
	1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914	KK RC12A KM ROUTE THRU 12B KM FACILITY = ANGEL PARK SOUTH KM FACILITY = APSO 0204, 0205 KM NATURAL WASH KM LENGTH = 2,600 KM SLOPE = 3.5% KM N = 0.040 KM HYDRAULIC RADIUS = 1.5 KM VELOCITY = 14.5 RM 1 0.05 0.15	
	1915 1916 1917 1918 1919	KK 12B BA 0.260 PB 3.13 LS 0 91.0 UD 0.233	
	1920 1921 1922	KK C12B KM COMBINE 12B AND RC12A HC 2	
	1923 1924 1925	KK RC12B KM ROUTE C12B TO C57B-3 KM FACILITY = ANGEL PARK SOUTH Page 26	

```
FACILITY # = APSO 0067
NATURAL WASH
LENGTH = 6,000
SLOPE = 2.3%
N = 0.040
HYDRAULIC RADIUS = 1.5
VELOCITY = 11.8
2 0.141 0.15
                                                                                                                                                          ALLGOW3.OUT
                           1926
1927
1928
1929
1930
1931
1932
1933
                                                                                                                                          HEC-1 INPUT
                                                                                                                                                                                                                                                                                      PAGE 52
1
                           LINE
                                                                \mathtt{ID}.\dots..1\dots.2\dots.3\dots.4\dots.5\dots.6\dots.7\dots.8\dots.9\dots.10
                           1934
1935
1936
1937
1938
                                                                            57B-3
0.310
3.04
0
0.332
                                                                KK
BA
PB
LS
UD
*
                                                                                                   82.1
                                                                          C57B-3
COMBINE RC12B AND 57B-3
                           1939
1940
1941
                                                                KK
KM
HC
*
                                                               KK RC57B-3
KM ROUTE C57B-3 TO C57B-2
KM FACTLITY = ANGEL PARK SOUTH
KM FACTLITY # = APSO 0067
KM NATURAL WASH
KM LENGTH = 1,300
KM SLOPE = 1.7%
KM N = 0.040
KH HYPRAULIC RADIUS = 1.5
KM VELOCITY = 10.2
RM 0 0.035 0.15
                           1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
                           1953
1954
1955
1956
1957
                                                                             57B-2
0.362
3.02
0
                                                                KK
BA
PB
LS
UD
                                                                                                   84.1
                                                                             0.332
                           1958
1959
1960
                                                                KK
KM
HC
*
                                                                          C57B-2
                                                                          COMBINE 57B-2 AND RC57B-3
                                                               KK RC57B-2
KM ROUTE C57B-2 TO CC57B-1
KM FACILITY = ANGEL PARK SOUTH
KM FACILITY = APSO 0067
KM NATURAL WASH
KM LENGTH = 1,000
KM SLOPE = 1.8%
KM N = 0.040
KM HYPRAULIC RADIUS = 1.5
KM VELOCITY = 10.5
RM 0 0.027 0.15
                           1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1
                                                                                                                                          HEC-1 INPUT
                                                                                                                                                                                                                                                                                      PAGE 53
                                                                ID.....,1.....2.....3.....4.....5.....6.....7.....8.....9......10
                           LINE
                           1972
1973
1974
1975
                                                                             13B-1
0.249
3.19
                                                                KK
BA
PB
LS
UD
                                                                                                   91.6
                                                                            0.284
                            1976
                                                                KK RC13B-1

KM ROUTE 13B-1 TO C13B-2

KM GRIFFITH PARK DRIVE AND HUALAPAI WAY

RD 3000 0.018 0.016 0 TRAP
                            1977
1978
1979
                            1980
                                                                                                                                                                                          0
                                                                                                                                                                                                            50
                            1981
1982
1983
                                                                             13B-2
0.216
3.14
                                                                KK
BA
PB
LS
UD
                                                                                                   89.7
                                                                             0.231
                            1986
1987
1988
1989
                                                                          COMBINE 13B-2 AND RC13B-1
HUALAPAI WAY AND LOCAL FACILITY
2
                                                                           C13B-2
                                                                KK RC13B-2

KM ROUTE C13B-2 TO CCPIC-A

KM LINING = GRASS

RD 4900 0.021 0.03
                            1990
1991
1992
1993
                                                                                                                                                  0
                                                                                                                                                                                        40
                                                                                                                                                              TRAP
                                                                            19A
0.253
3.25
                            1994
                                                                KK
BA
PB
LS
UD
*
                            1995
1996
1997
                                                                                                   89.9
                                                                             0.351
                            1998
                            1999
2000
2001
2002
                                                                          R19A
ROUTE 19A TO C13A-1
UNNAMED ROAD
4300 0.021 0.016
                                                                                                                                                                                          0
                                                                                                                                                                                                            50
                                                                                                                                                  n
                                                                                                                                                              TRAP
```

```
13A-1
0.224
3.19
                                                    KK
BA
PB
LS
UD
                                                                                91.4
                                                              0.302
1
                                                                                                                HEC-1 INPUT
                                                                                                                                                                                                                                PAGE 54
                      LINE
                                                    ID.....1....2....3....4....5....6....7....8.....9....10
                      2008
2009
2010
2011
                                                           C13A-1
COMBINE 13A-1 AND R19A
TOWN CENTER DRIVE AND SWALE
2
                                                   KK RC13A-1

KM ROUTE C13A-1 TO C13A-2

KM NATURAL WASH

KM TRAVEL LENGTH = 2,800

KM SLOPE = 2.1%

KM N = 0.040

KM HYDRAULTC RADIUS = 1.5

KM VELOCITY = 11.4

RM 1 0.068 0.15
                      2012
2013
2014
2015
2016
2017
2018
2019
2020
                      2021
2022
2023
2024
2025
                                                             13A-2
0.188
3.15
0
                                                    KK
BA
PB
LS
UD
                                                                                90.0
                                                              0.236
                      2026
2027
2028
                                                             COMBINE 13A-2 AND RC13A-1
                                                    KK RC13A-2

KM ROUTE C13A-2 TO CPIC-C

KM LINING = GRASS

RD 5200 0.015 0.03
                      2029
2030
2031
2032
                                                                                                                      0
                                                                                                                                TRAP
                                                                                                                                                    40
                                                                                                                                                                      4
                      2033
2034
2035
2036
2037
                                                             PIC-C
0.243
3.08
0
0.373
                                                    KK
BA
PB
LS
UD
                                                                                 90.4
                      2038
2039
2040
                                                            CPIC-C
COMBINE PIC-C AND RC13A-2
2
                      2041
2042
2043
2044
                                                    KK RCPIC-C
KM ROUTE CPIC-C TO CPIC-A
KM LINING = GRASS
RD 2200 0.025 0.03
                                                                                                                      0
                                                                                                                              TRAP
                                                                                                                                                    40
1
                                                                                                                HEC-1 INPUT
                                                                                                                                                                                                                                PAGE 55
                      LINE
                                                    ID.....1.....2.....3.....4.....5.....6.....7.....8.....9.....10
                      2045
2046
2047
2048
2049
                                                             PIC-A
0.359
3.03
0
0.499
                                                    KK
BA
PB
LS
UD
                                                                                 91.1
                      2050
2051
2052
                                                            CPIC-A
COMBINE RCPIC-C AND PIC-A
2
                      2053
2054
2055
                                                    KK CCPIC-A
KM COMBINE CPIC-A AND RC13B-2
HC 2
                                                    KKRCCPIC-A
KM ROUTE CCPIC-A TO C57B-1
KM FACILITY = ANGEL PARK -
KM FACILITY # = APP2 0000
KM LINING = GRASS
RD 4793 0.021 0.03
                      2056
2057
2058
2059
2060
2061
                                                                                                            PECCOLE 2
                                                                                                                      0
                                                                                                                                TRAP
                                                                                                                                                    10
                                                                                                                                                                      2
                      2062
2063
2064
2065
2066
                                                             57B-1
0.197
2.92
0
0.277
                                                    KK
BA
PB
LS
UD
                                                                                85.5
                                                           C57B-1
COMBINE 57B-1 AND RCCPIC-A
2
                      2067
2068
2069
                       2070
2071
                                                            COMBINE C57B-1 AND RC57B-2
                       2072
                      2073
                                                    KKRCC57B-1
```

	2074 2075 2076 2077 2078	KM ROUTE CC57B-1 TO C57B-4 KM FACILITY = ANGEL PARK - SOUTH BRANCH KM FACILITY = APSO 0050 KM LINING = NATURAL WASH RD 300 0.0184 0.04 0 TRAP 100 3	
1	LINE	HEC-1 INPUT PAGE 5 ID12345678910	,6
	2079 2080 2081 2082 2083	KK 57B-4 BA 0.200 PB 2.91 LS 0 90.0 UD 0.233	
	2084 2085 2086	KK C57B-4 KM COMBINE RCC57B-1 AND 57B-4 HC 2	
	2087 2088 2089 2090 2091	KK PIC-B BA 0.441 PB 2.98 LS 0 91.1 UD 0.471	
	2092 2093 2094 2095 2096 2097	KK RPIC-B KM ROUTE PIC-B TO CC57B-4 KM FACTLITY = ANGEL PARK - PECCOLE 1 KM FACILITY # = APP1 0000 KM LINING = RCP RD 2982 0.024 0.013 0 CIRC 6	
	2098 2099 2100	KK CC57B-4 KM COMBINE RPIC-B AND C57B-4 HC 2	
Reference	2101 2102 2103 2104 2105 2106	KKRCC57B-4 KM ROUTE CC57B-4 TO ANGLPKIN KM FACILITY = ANGEL PARK SOUTH KM FACILITY = APSO 0000, 0020 KM LINING = RCB RD 2857 0.0162 0.015 0 TRAP 24 0	
	2107 2108 2109 2110 2111	KK 38A BA 0.353 PB 2.86 LS 0 91.6 UD 0.399	
1	2112 2113 2114 2115 2116 2117	KK R38A KM ROUTE 38A TO C38B KM FACILITY = ANGEL PARK - DURANGO KM FACILITY # = APDG 0000,0060 KM LINING = RCP RD 4500 0.0096 0.015 0 CIRC 6 * HEC-1 INPUT PAGE 5	57
-	LINE	ID12345678910	
	2118 2119 2120 2121 2122	KK 38B BA 0.440 PB 2.82 LS 0 92.9 UD 0.375	
	2123 2124 2125 2126	KK C38B KM COMBINE 38B AND R38A KM DUCHARME AND DURANGO HC 2	
	2127 2128 2129 2130 2131	KK 57BA BA 0.317 PB 2.96 LS 0 78.2 UD 0.436	
	2132 2133 2134 2135	KK R57BA KM ROUTE 57BA TO C3C KM RAMPART BOULEVARD RD 500 0.02 0.016 0 TRAP 0 50	
	2136 2137 2138 2139 2140	KK 3C BA 0.153 PB 2.90 LS 0 93.1 UD 0.246	
	2141 2142 2143 2144	KK C3C KM COMBINE 3C AND R57BA KM RAMPART AND REGENT LAS VEGAS HC 2	
	2145 2146 2147	KK RC3C KM ROUTE C3C TO ANGLPKIN KM LINING = UNLINED Page 29	

1837	:	:	:	SF2-C				
1842	:	:	CSF2-C	:				
1042	:	•	V V					Reference
1845	:	÷	RCSF2-C			^	1/4	Dokren
1852	:			₩ sw11		6	MINI	Les .
	:	:	:	V		C	V	
1857	:	:	:	RSW11				
1863		:	:	:	Sw17			
1000	:	:	:					
1868	:	:	:	CSW17 V				
1871	:	:	:	RCSW17				
1877	:	:	:	:	SW18			
	:	÷	:		:			
1882	:	:	:	CSW18 V				
1885		:	:	V RCSW18				
1005	:	:	:	:	12.			
1896	:	:	:	:	12A			
1901	:	÷	:	C12A				
1004	:	:	:	V V				
1904	:	:	:	RC12A				
1915	:	:	:	:	12B			
1920	:	:	:	C12B	:			
1920	:	:	:	V				
1923	:	:	:	RC12B				
1934	:	:	:	:	57B-3			
233 .	:	:	:	:	:			
1939		:	:	С57в-3 V				
1942		:		V RC57B-3				
	:	:	:	:				
1953	:	:	:	:	57B-2			
1958	•	:	:	C57B−2				
1001	:	•	:	V V				
1961	:	·	:	RC57B-2				
1972	•	÷			13B-1 V			
1977			;	:	V RC13B-1			
1377	÷	•	:		· KCI3B-I			
1981	:	÷	:		:	13B-2		
1986	•	÷			C13B-2.	:		
	•				V	^		
1990		:	:	:	RC13B-2			
1994	:	:	:			19A V		
		:	:			V		
1999		:				R19A		
2003					:	:	13A-1	
2008		÷	:		:	C13A-1.	:	
2008			:	:	:	V		
2012		•		•	•	RC13A-1		
2021				•			13A-2	
-022	÷					·		
2026		•				C13A-2. V		
2029						V RC13A-2		
					:	**************************************		
2033			:				PIC-C	
		٠			Pag	je 59	•	

2020					ALLGO	w3.out	
2038	:	:	:	•	:	CPIC-C. V V	
2041	•	:	:	:	:	RCPIC-C	
2045			:		:		
2045			:		:		PIC-A ·
2050	(**)		:		:	CPIC-A.	
2052		:	:				
2053		:	:		CCPIC-A.		
2056	•	:			V RCCPIC-A		
		:	:		:		
2062			:		:	57B-1	
2067	•	:	:		С57в-1.		
			:		:		
2070	•		:	СС57в-1 V			
2073			:	RCC57B-1			
			•				
2079	•	•	:		57B-4		
2084	•		1	C57B-4			
2087	•				PIC-B V		
2092	•	•			V RPIC-B		
2032	•	•	•			1	End Reference
2098		•		CC57B-4		*	FNAR
2101	•	•	9	V RCC57B-4		/ 1	
2101		•					
2107				•	38A V		
2112	•	•	•		v R38A		
2112		•					
2118		•				38B	
2123		•			C38B.		
2123							
2127					•	57ва V	
2132	•					V R57ва	
2132					•		
2136		:		:		:	3C
2141	•	:	:		:	c3c.	:
2141	•			•	:	V V	
2145	•		:		:	RC3C	
2150	•		:		:		AP
2150	•		•		:		•
2155	•		ANGLPKIN.			• • • • • • • • • • • • • • • • • • • •	
2160	•		V V ANGLPKDB				
2160			V				
2181		*	V ANGLPKOT				
2187		:	•	GD34AB			
2187		· ·		GD34AB			
2192		:	CGD34AB.				
2106		:	V V				
2196			RCGD34AB				
2202		;		GD34AC			
2267	:	:		:			
2207	:	:	CGD34AC.				
2211	:	CCGD34AC					
		V V					
2216	:	RCGD34AC					
2222	:	•	K-C				
		:			materialistic all the de-		
2233	•			> D	CHEY Pag	je 60	

						ALLGOWS.C	JU I						
2 COMBINED AT	C8B-1	1.14	1	FLOW TIME	1246. 3.75	1219. 3.75	1173. 3.75	1128. 3.75	1111. 3.75	1098. 3.75	1089. 3.75	1075. 3.75	1056. 3.75
ROUTED TO +	RC8B-1	1.14	1	FLOW TIME	1222. 3.83	1195. 3.75	1152. 3.83	1110. 3.83	1090. 3.83	1081. 3.83	1071. 3.83	1055.	1040. 3.83
HYDROGRAPH AT +	8B-2	.42	1	FLOW TIME	574. 3.75	564. 3.75	547. 3.75	530. 3.75	523. 3.75	518. 3.75	515. 3.75	510. 3.75	503. 3.75
2 COMBINED AT	C8B-2	1.56	1	FLOW TIME	1795. 3.75	1758. 3.75	1697. 3.75	1632. 3.75	1610. 3.75	1593. 3.75	1578. 3.75	1562. 3.75	1533. 3.75
ROUTED TO +	RC8B-2	1.56	1	FLOW TIME	1774. 3.83	1736. 3.83	1681. 3.83	1618. 3.83	1593. 3.83	1582. 3.83	1565. 3.83	1547. 3.83	1522. 3.83
HYDROGRAPH AT +	11A-2	.29	1	FLOW TIME	433. 3.58	424. 3.58	409. 3.58	394. 3.58	388. 3.58	384. 3.58	381. 3.58	376. 3.58	370. 3.58
ROUTED TO +	R11A-2	.29	1	FLOW TIME	422. 3.67	413. 3.67	393. 3.67	378. 3.67	372. 3.67	368. 3.67	365. 3.67	360. 3.67	354. 3.67
HYDROGRAPH AT +	8A	.31	1	FLOW TIME	384. 3.67	375. 3.67	361. 3.67	347. 3.67	341. 3.67	337. 3.67	335. 3.67	330. 3.67	324. 3.67
2 COMBINED AT +	C8A	.60	1	FLOW TIME	805. 3.67	788. 3.67	755. 3.67	725. 3.67	713. 3.67	705. 3.67	700. 3.67	690. 3.67	679. 3.67
ROUTED TO +	RC8A	.60	1	FLOW TIME	751. 3.75	734. 3.75	704. 3.75	675. 3.75	664. 3.75	657. 3.75	651. 3.75	643. 3.75	632. 3.75
HYDROGRAPH AT +	3B-2A	.24	1	FLOW TIME	329. 3.67	322. 3.67	311. 3.67	300. 3.67	295. 3.67	292. 3.67	290. 3.67	286. 3.67	282. 3.67
2 COMBINED AT +	C3B-2A	.84	1	FLOW TIME	1040. 3.75	1018. 3.75	977. 3.75	939. 3.75	924. 3.75	914. 3.75	907. 3.75	895. 3.75	880. 3.75
2 COMBINED AT +	CC3B-2A	2.40	1	FLOW TIME	2803. 3.75	2743. 3.75	2644. 3.75	2540. 3.75	2505. 3.75	2476. 3.75	2453. 3.75	2428. 3.75	2384. 3.75
ROUTED TO +	RCC3B-2A	2.40	1	FLOW TIME	2769. 3.83	2725. 3.83	2623. 3.83	2515. 3.83	2493. 3.83	2463. 3.83	2431. 3.83	2413. 3.83	2367. 3.83
HYDROGRAPH AT +	3в-2в	.27	1	FLOW TIME	271. 3.75	265. 3.75	254. 3.75	244. 3.75	240. 3.75	237. 3.75	235. 3.75	231. 3.75	227. 3.75
2 COMBINED AT	С3В-2В	2.67	1	FLOW TIME	3025. 3.83	2975. 3.83	2863. 3.83	2746. 3.83	2720. 3.83	2687. 3.83	2653. 3.83	2632. 3.83	2582. 3.83
2 COMBINED AT +	ССЗВ-2В	14.42	1	FLOW TIME	10916. 3.92	10721. 3.92	10381. 3.92	10032. 3.92	9913. 3.92	9809. 3.92	9738. 3.92	9637. 3.92	9486. 3.92
ROUTED TO +	RCC3B-2B	14.42	1	FLOW TIME	10822. 3.92	10623. 3.92	10284. 3.92	9931. 3.92	9814. 3.92	9701. 3.92	9639. 3.92	9527. 3.92	9379. 3.92
HYDROGRAPH AT +	SF2-C	.39	1	FLOW TIME	294. 3.92	287. 3.92	275. 3.92	263. 3.92	259. 3.92	255. 3.92	253. 3.92	249. 3.92	245. 3.92
2 COMBINED AT	CSF2-C	14.81	1	FLOW TIME	11116. 3.92	10909. 3.92	10559. 3.92	10195. 3.92	10073. 3.92	9957. 3.92	9891. 3.92	9776. 3.92	9623. 3.92
ROUTED TO +	RCSF2-C	14.81	1	FLOW TIME	11007. 3.92	10789. 3.92	10429. 3.92	10061. 3.92	9937. 3.92	9831. 3.92	9758. 4.00	9650. 4.00	9507. 4.00
HYDROGRAPH AT	SW11	.59	1	FLOW TIME	759. 3.75	743. 3.75	717. 3.75	691. 3.75	680. 3.75	673. 3.75	668. 3.75	660. 3.75	649. 3.75
ROUTED TO +	RSW11	.59	1	FLOW TIME	754. 3.75	738. 3.75	712. 3.75	686. 3.75	676. 3.75	668. 3.75	663. 3.75	655. 3.75	644. 3.75
HYDROGRAPH AT +	sw17	.36	1	FLOW TIME	479. 3.67	469. 3.67	452. 3.67	436. 3.67	429. 3.67	424. 3.67	421. 3.67	416. 3.67	409. 3.67
2 COMBINED AT +	CSW17	.94	1	FLOW TIME	1221. 3.75	1196. 3.75	1153. 3.75	1111. 3.75	1095. 3.75	1083. 3.75	1075. 3.75	1061. 3.75	1044. 3.75
ROUTED TO +	RCSW17	.94	1	FLOW TIME	1211. 3.75	1186. 3.75	1143. 3.75	1101. 3.75	1083. 3.75	1073. 3.75	1063. 3.75	1051. 3.75	1035. 3.75
HYDROGRAPH AT +	SW18	.41	1	FLOW TIME	519. 3.67	507. 3.67	489. 3.67	470. 3.67	463. 3.67	457. 3.67	454. 3.67	448. 3.67	440. 3.67
2 COMBINED AT +	CSW18	1.35	1	FLOW TIME	1718. 3.75	1682. 3.75 Page 51	1622. 3.75	1562. 3.75	1537. 3.75	1521. 3.75	1508. 3.75	1490. 3.75	1467. 3.75
						age 11							

Begin

						ALLGOWS.	301						
ROUTED TO +	RCSW18	1.35	1	FLOW TIME	1610. 3.92	1576. 3.92	1520. 3.92	1464. 3.92	1441. 3.92	1426. 3.92	1414. 3.92	1397. 3.92	1375. 3.92
HYDROGRAPH AT +	12A	.39	1	FLOW TIME	576. 3.67	565. 3.67	547. 3.67	529. 3.67	521. 3.67	516. 3.67	513. 3.67	507. 3.67	500. 3.67
2 COMBINED AT +	C12A	1.74	1	FLOW TIME	2046. 3.83	2003. 3.83	1932. 3.83	1861. 3.83	1832. 3.83	1813. 3.83	1798. 3.83	1776. 3.83	1748. 3.83
ROUTED TO +	RC12A	1.74	1	FLOW TIME	2025. 3.92	1983. 3.92	1913. 3.92	1843. 3.92	1815. 3.92	1796. 3.92	1782. 3.92	1760. 3.92	1732. 3.92
HYDROGRAPH AT +	12B	.26	1	FLOW TIME	387. 3.67	380. 3.67	367. 3.67	355. 3.67	350. 3.67	347. 3.67	344. 3.67	340. 3.67	335. 3.67
2 COMBINED AT	С12в	2.00	1	FLOW TIME	2259. 3.83	2212. 3.83	2134. 3.83	2056. 3.83	2024. 3.83	2002. 3.83	1987. 3.83	1962. 3.83	1931. 3.83
ROUTED TO +	RC12B	2.00	1	FLOW TIME	2194. 4.00	2148. 4.00	2073. 4.00	1998. 4.00	1967. 4.00	1946. 4.00	1931. 4.00	1907. 4.00	1877. 4.00
HYDROGRAPH AT +	57B-3	.31	1	FLOW TIME	267. 3.75	260. 3.75	248. 3.75	237. 3.75	233. 3.75	230. 3.75	227. 3.75	224. 3.75	219. 3.75
2 COMBINED AT	С57в-3	2.31	1	FLOW TIME	2394. 4.00	2344. 4.00	2261. 4.00	2177. 4.00	2144. 4.00	2120. 4.00	2104. 4.00	2077. 4.00	2044. 4.00
ROUTED TO +	RC57B-3	2.31	1	FLOW TIME	2375. 4.00	2325. 4.00	2242. 4.00	2158. 4.00	2125. 4.00	2101. 4.00	2085. 4.00	2058. 4.00	2025. 4.00
HYDROGRAPH AT	57B-2	.36	1	FLOW TIME	338. 3.75	329. 3.75	316. 3.75	302. 3.75	297. 3.75	293. 3.75	291. 3.75	286. 3.75	281. 3.75
2 COMBINED AT	С57в-2	2.67	1	FLOW TIME	2626. 4.00	2570. 4.00	2477. 4.00	2384. 4.00	2347. 4.00	2321. 4.00	2302. 4.00	2273. 4.00	2236. 4.00
ROUTED TO +	RC57B-2	2.67	1	FLOW TIME	2609. 4.00	2553. 4.00	2460. 4.00	2367. 4.00	2330. 4.00	2304. 4.00	2285. 4.00	2256. 4.00	2219. 4.00
HYDROGRAPH AT	13B-1	.25	1	FLOW TIME	354. 3.67	347. 3.67	336. 3.67	325. 3.67	321. 3.67	318. 3.67	315. 3.67	312. 3.67	307. 3.67
ROUTED TO	RC13B-1	.25	1	FLOW TIME	354. 3.75	347. 3.75	336. 3.75	324. 3.75	320. 3.75	317. 3.75	314. 3.83	311. 3.83	307. 3.83
HYDROGRAPH AT	13B-2	.22	1	FLOW TIME	310. 3.67	304. 3.67	294. 3.67	283. 3.67	279. 3.67	277. 3.67	274. 3.67	271. 3.67	267. 3.67
2 COMBINED AT	C13B-2	.47	1	FLOW TIME	634. 3.75	622. 3.75	602. 3.75	581. 3.75	573. 3.75	567. 3.75	563. 3.75	557. 3.75	549. 3.75
ROUTED TO +	RC13B-2	.47	1	FLOW TIME	641. 3.83	628. 3.83	607. 3.83	586. 3.83	578. 3.83	572. 3.83	568. 3.83	561. 3.83	553. 3.83
HYDROGRAPH AT +	19A	.25	1	FLOW TIME	318. 3.75	312. 3.75	301. 3.75	291. 3.75	287. 3.75	284. 3.75	282. 3.75	278. 3.75	274. 3.75
ROUTED TO	R19A	.25	1	FLOW TIME	319. 3.92	313. 3.92	302. 3.92	292. 3.92	288. 3.92	285. 3.92	283. 3.92	280. 3.92	276. 3.92
HYDROGRAPH AT	13A-1	.22	1	FLOW TIME	308. 3.75	303. 3.75	293. 3.75	283. 3.75	279. 3.75	277. 3.75	275. 3.75	272. 3.75	268. 3.75
2 COMBINED AT	C13A-1	.48	1	FLOW TIME	595. 3.83	583. 3.83	564. 3.83	545. 3.83	537. 3.83	532. 3.83	528. 3.83	522. 3.83	514. 3.83
ROUTED TO	RC13A-1	.48	1	FLOW TIME	581. 3.92	569. 3.92	551. 3.92	532. 3.92	524. 3.92	519. 3.92	515. 3.92	509. 3.92	502. 3.92
HYDROGRAPH AT +	13A-2	.19	1	FLOW TIME	272. 3.67	267. 3.67	258. 3.67	249. 3.67	246. 3.67	243. 3.67	241. 3.67	238. 3.67	235. 3.67
2 COMBINED AT	C13A-2	.66	1	FLOW TIME	782. 3.83	766. 3.83	740. 3.83	715. 3.83	704. 3.83	697. 3.83	692. 3.83	684. 3.83	673. 3.83
ROUTED TO +	RC13A-2	.66	1	FLOW TIME	781. 3.92	765. 3.92	738. 3.92	712. 3.92	702. 3.92	694. 3.92	689. 3.92	681. 3.92	670. 3.92
HYDROGRAPH AT	PIC-C	.24	1	FLOW TIME	280. 3.83	274. 3.83	265. 3.83	256. 3.83	252. 3.83	250. 3.83	248. 3.83	245. 3.83	241. 3.83
2 COMBINED AT	CPIC-C	.91	1	FLOW TIME	1041. 3.92	1020. 3.92	985. 3.92	951. 3.92	937. 3.92	927. 3.92	920. 3.92	909. 3.92	895. 3.92
						Page 5	L2						

						ALLGOW3.	OUT						
ROUTED TO +	RCPIC-C	.91	1	FLOW TIME	1030. 3.92	1009. 3.92	975. 3.92	940. 3.92	922. 3.92	915. 3.92	908. 3.92	896. 3.92	881. 3.92
HYDROGRAPH AT +	PIC-A	.36	1	FLOW TIME	356. 3.92	349. 3.92	338. 3.92	326. 3.92	322. 3.92	318. 3.92	316. 3.92	312. 3.92	308. 3.92
2 COMBINED AT +	CPIC-A	1.27	1	FLOW TIME	1386. 3.92	1359. 3.92	1313. 3.92	1266. 3.92	1243. 3.92	1233. 3.92	1224. 3.92	1208. 3.92	1188. 3.92
2 COMBINED AT	CCPIC-A	1.73	1	FLOW TIME	1997. 3.92	1959. 3.92	1895. 3.92	1830. 3.92	1800. 3.92	1785. 3.92	1772. 3.92	1750. 3.92	1723. 3.92
ROUTED TO +	RCCPIC-A	1.73	1	FLOW TIME	1974. 4.00	1921. 4.00	1874. 4.00	1792. 4.00	1776. 4.00	1769. 4.00	1758. 4.00	1721. 4.00	1690. 4.00
HYDROGRAPH AT +	57B-1	.20	1	FLOW TIME	199. 3.67	194. 3.67	186. 3.67	179. 3.67	176. 3.75	174. 3.75	172. 3.75	170. 3.75	167. 3.75
2 COMBINED AT	C57B-1	1.93	1	FLOW TIME	2106. 3.92	2049. 3.92	2004. 3.92	1912. 3.92	1900. 3.92	1876. 3.92	1862. 4.00	1824. 4.00	1791. 4.00
2 COMBINED AT	сс57в-1	4.60	1	FLOW TIME	4702. 4.00	4591. 4.00	4447. 4.00	4268. 4.00	4213. 4.00	4179. 4.00	4148. 4.00	4080. 4.00	4011. 4.00
ROUTED TO +	RCC57B-1	4.60	1	FLOW TIME	4694. 4.00	4583. 4.00	4439. 4.00	4260. 4.00	4205. 4.00	4170. 4.00	4139. 4.00	4071. 4.00	4002. 4.00
HYDROGRAPH AT +	57B-4	.20	1	FLOW TIME	262. 3.67	257. 3.67	248. 3.67	239. 3.67	236. 3.67	233. 3.67	231. 3.67	229. 3.67	225. 3.67
2 COMBINED AT	C57B-4	4.80	1	FLOW TIME	4813. 4.00	4700. 4.00	4553. 4.00	4371. 4.00	4314. 4.00	4278. 4.00	4246. 4.00	4177. 4.00	4107. 4.00
HYDROGRAPH AT	PIC-B	.44	1	FLOW TIME	442. 3.92	433. 3.92	419. 3.92	405. 3.92	399. 3.92	395. 3.92	392. 3.92	388. 3.92	382. 3.92
ROUTED TO	RPIC-B	.44	1	FLOW TIME	439. 3.92	431. 3.92	416. 3.92	402. 3.92	396. 3.92	392. 3.92	390. 3.92	385. 3.92	379. 3.92
2 COMBINED AT	сс57в-4	5.24	1	FLOW TIME	5243. 4.00	5122. 4.00	4961. 4.00	4765. 4.00	4702. 4.00	4663. 4.00	4628. 4.00	4554. 4.00	4479. 4.00
ROUTED TO	RCC57B-4	5.24	1	FLOW TIME	5225. 4.00	5104. 4.00	4944. 4.00	4747. 4.00	4686. 4.00	4644. 4.00	4606. 4.00	4534. 4.00	4460. 4.00
HYDROGRAPH AT	38A	.35	1	FLOW TIME	374. 3.83	367. 3.83	355. 3.83	343. 3.83	338. 3.83	335. 3.83	333. 3.83	329. 3.83	324. 3.83
ROUTED TO +	R38A	.35	1	FLOW TIME	368. 3.92	364. 3.92	350. 3.92	337. 3.92	333. 3.92	331. 3.92	330. 3.92	327. 3.92	320. 3.92
HYDROGRAPH AT	38в	.44	1	FLOW TIME	492. 3.83	483. 3.83	467. 3.83	452. 3.83	446. 3.83	442. 3.83	439. 3.83	434. 3.83	428. 3.83
2 COMBINED AT	С38в	.79	1	FLOW TIME	856. 3.83	842. 3.83	810. 3.83	784. 3.83	775. 3.83	769. 3.83	764. 3.83	753. 3.83	740. 3.83
HYDROGRAPH AT	57ва	.32	1	FLOW TIME	186. 3.92	180. 3.92	171. 3.92	163. 3.92	159. 3.92	157. 3.92	155. 3.92	152. 3.92	149. 3.92
ROUTED TO	R57BA	.32	1	FLOW TIME	185. 3.92	179. 3.92	171. 3.92	162. 3.92	158. 3.92	156. 3.92	154. 3.92	151. 3.92	148. 3.92
HYDROGRAPH AT +	3C	.15	1	FLOW TIME	218. 3.67	214. 3.67	207. 3.67	201. 3.67	198. 3.67	196. 3.67	195. 3.67	193. 3.67	190. 3.67
2 COMBINED AT	c3c	.47	1	FLOW TIME	358. 3.75	350. 3.75	335. 3.75	322. 3.75	316. 3.75	312. 3.75	309. 3.75	305. 3.75	299. 3.75
ROUTED TO +	RC3C	.47	1	FLOW TIME	358. 3.83	350. 3.83	336. 3.83	322. 3.83	316. 3.83	312. 3.83	310. 3.83	305. 3.83	300. 3.83
HYDROGRAPH AT +	АР	.67	1	FLOW TIME	450. 3.83	438. 3.83	418. 3.83	398. 3.83	390. 3.83	385. 3.83	381. 3.83	375. 3.83	367. 3.83
5 COMBINED AT	ANGLPKIN	21.99	1	FLOW TIME	17682. 3.92	17317. 3.92	16736. 3.92	16120. 4.00	15911. 4.00	15749. 4.00	15645. 4.00	15449. 4.00	15212. 4.00
ROUTED TO +	ANGLPKDB	21.99	1	FLOW TIME	5746. 5.42	5406. 5.42	4785. 5.58	4149. 5.67	3879. 5.75	3713. 5.75	3566. 5.75	3372. 5.83	3116. 5.92
			** 1	PEAK S STAGE TIME	TAGES IN FEET 2620.18 5.42	2620.13 5.42		2619.94 5.67	2619.88 5.75	2619.85 5.75	2619.82 5.75	2619.79 5.83	2619.74 5.92
						Page 5	13						

Flow to

END Ref.

Washington, D.C. 20472

OCT 19 2006

CERTIFIED MAIL RETURN RECEIPT REQUESTED

The Honorable Oscar B. Goodman Mayor, City of Las Vegas City Hall, 10th Floor 400 Stewart Avenue Las Vegas, NV 89101

IN REPLY REFER TO:

Case No.:

06-09-BF86P

Follows Conditional

Case No.:

05-09-0420R

Community Name: City of Las Vegas, NV

Community No.:

325276

For: William R. Blanton Jr., CFM, Chief

Mitigation Division

Engineering Management Section

Effective Date of This Revision:

OCT 19 2006

Dear Mayor Goodman:

The Flood Insurance Rate Map for your community has been revised by this Letter of Map Revision (LOMR). Please use the enclosed annotated map panel(s) revised by this LOMR for floodplain management purposes and for all flood insurance policies and renewals issued in your community.

Additional documents are enclosed which provide information regarding this LOMR. Please see the List of Enclosures below to determine which documents are included. Other attachments specific to this request may be included as referenced in the Determination Document. If you have any questions regarding floodplain management regulations for your community or the National Flood Insurance Program (NFIP) in general, please contact the Consultation Coordination Officer for your community. If you have any technical questions regarding this LOMR, please contact the Director, Federal Insurance and Mitigation Division of the Department of Homeland Security's Federal Emergency Management Agency (FEMA) in Oakland, California, at (510) 627-7175, or the FEMA Map Assistance Center toll free at 1-877-336-2627 (1-877-FEMA MAP). Additional information about the NFIP is available on our website at http://www.fema.gov/nfip.

Sincerely,

Kevin C. Long, CFM, Project Engineer **Engineering Management Section**

Mitigation Division

Kevin C Long

List of Enclosures:

Letter of Map Revision Determination Document Annotated Flood Insurance Rate Map

cc: Mr. Randy Fultz, P.E., CFM Assistant City Engineer City of Las Vegas

> Mr. Kevin Eubanks, P.E., CFM Assistant General Manager Clark County Regional Flood Control District

Mr. Michael Ludwig, P.E., Project Manager G.C. Wallace, Inc.

Issue Date:

OCT 1 9 2006

Effective Date: OCT 1 9 2006

Case No.: 06-09-BF86P

LOMR-APP

Follows Conditional Case No.: 05-09-0420R

Federal Emergency Management Agency

Washington, D.C. 20472

LETTER OF MAP REVISION **DETERMINATION DOCUMENT**

C	COMMUNITY AND REVISION INFORMATION		PROJECT DESCRIPTION	1	BASIS OF REQUEST
COMMUNITY	City of Las Vegas Clark County Nevada	S	STORM DRAIN		YDRAULIC ANALYSIS YDROLOGIC ANALYSIS
	COMMUNITY NO.: 325276				
IDENTIFIER	Village at Queensridge		APPROXIMATE LATITUDE & LO SOURCE: USGS QUADRANGLE		: 36.168, -115.286 M: NAD 83
	ANNOTATED MAPPING ENCLOSURES		ANNOTAT	ED STUDY I	ENCLOSURES
TYPE: FIRM*	NO.: 32003C2145 E DATE: Septembe	er 27, 2002 N	NO REVISION TO THE FLOOD I	INSURANCE	E STUDY REPORT
* FIRM - Flood Inst	changes to flooding sources affected by this revision surance Rate Map; ** FBFM - Flood Boundary and Fl	n. loodway Map; ***	* FHBM - Flood Hazard Bounda	гу Мар	
			REVISED REACH(ES)		
Unnamed Wash - 1	from approximately 2,200 feet downstream to approx	oximately 100 fee	et downstream of Rampart Boulk	evard	
		SUMMARY OF R	REVISIONS		
Flooding Source		ffective Floodin	•	Increases	
Unnamed Wash	2	Zone A	Contained	NONE	YES
* BFEs - Base Floo	od Elevations				
		DETERMIN	VATION		

This document provides the determination from the Department of Homeland Security's Federal Emergency Management Agency (FEMA) regarding a request for a Letter of Map Revision (LOMR) for the area described above. Using the information submitted, we have determined that a revision to the flood hazards depicted in the Flood Insurance Study (FIS) report and/or National Flood Insurance Program (NFIP) map is warranted. This document revises the effective NFIP map, as indicated in the attached documentation. Please use the enclosed annotated map panels revised by this LOMR for floodplain management purposes and for all flood insurance policies and renewals in your community.

This determination is based on the flood data presently available. The enclosed documents provide additional information regarding this determination. If you have any questions about this document, please contact the FEMA Map Assistance Center toll free at 1-877-336-2627 (1-877-FEMA MAP) or by letter addressed to the LOMR Depot, 3601 Eisenhower Avenue, Alexandria, VA 22304. Additional Information about the NFIP is available on our website at http://www.fema.gov/nfip.

Kwin C. Long

Kevin C. Long, CFM, Project Engineer **Engineering Management Section** Mitigation Division

Washington, D.C. 20472

LETTER OF MAP REVISION DETERMINATION DOCUMENT (CONTINUED)

COMMUNITY INFORMATION

APPLICABLE NFIP REGULATIONS/COMMUNITY OBLIGATION

We have made this determination pursuant to Section 206 of the Flood Disaster Protection Act of 1973 (P.L. 93-234) and in accordance with the National Flood Insurance Act of 1968, as amended (Title XIII of the Housing and Urban Development Act of 1968, P.L. 90-448), 42 U.S.C. 4001-4128, and 44 CFR Part 65. Pursuant to Section 1361 of the National Flood Insurance Act of 1968, as amended, communities participating in the NFIP are required to adopt and enforce floodplain management regulations that meet or exceed NFIP criteria. These criteria, including adoption of the FIS report and FIRM, and the modifications made by this LOMR, are the minimum requirements for continued NFIP participation and do not supersede more stringent State/Commonwealth or local requirements to which the regulations apply.

NFIP regulations Subparagraph 60.3(b)(7) requires communities to ensure that the flood-carrying capacity within the altered or relocated portion of any watercourse is maintained. This provision is incorporated into your community's existing floodplain management ordinances; therefore, responsibility for maintenance of the altered or relocated watercourse, including any related appurtenances such as bridges, culverts, and other drainage structures, rests with your community. We may request that your community submit a description and schedule of maintenance activities necessary to ensure this requirement.

COMMUNITY REMINDERS

We based this determination on the 1-percent-annual-chance discharges computed in the submitted hydrologic model. Future development of projects upstream could cause increased discharges, which could cause increased flood hazards. A comprehensive restudy of your community's flood hazards would consider the cumulative effects of development on discharges and could, therefore, indicate that greater flood hazards exist in this area.

Your community must regulate all proposed floodplain development and ensure that permits required by Federal and/or State/Commonwealth law have been obtained. State/Commonwealth or community officials, based on knowledge of local conditions and in the interest of safety, may set higher standards for construction or may limit development in floodplain areas. If your State/Commonwealth or community has adopted more restrictive or comprehensive floodplain management criteria, those criteria take precedence over the minimum NFIP requirements.

We will not print and distribute this LOMR to primary users, such as local insurance agents or mortgage lenders; instead, the community will serve as a repository for the new data. We encourage you to disseminate the information in this LOMR by preparing a news release for publication in your community's newspaper that describes the revision and explains how your community will provide the data and help interpret the NFIP maps. In that way, interested persons, such as property owners, insurance agents, and mortgage lenders, can benefit from the information.

This determination is based on the flood data presently available. The enclosed documents provide additional information regarding this determination. If you have any questions about this document, please contact the FEMA Map Assistance Center toll free at 1-877-336-2627 (1-877-FEMA MAP) or by letter addressed to the LOMR Depot, 3601 Eisenhower Avenue, Alexandria, VA 22304. Additional Information about the NFIP is available on our website at http://www.fema.gov/nfip.

Kevin C. Long, CFM, Project Engineer Engineering Management Section Mitigation Division

Washington, D.C. 20472

LETTER OF MAP REVISION DETERMINATION DOCUMENT (CONTINUED)

We have designated a Consultation Coordination Officer (CCO) to assist your community. The CCO will be the primary liaison between your community and FEMA. For information regarding your CCO, please contact:

Ms. Sally M. Ziolkowski
Director, Federal Insurance and Mitigation Division
Federal Emergency Management Agency, Region IX
1111 Broadway Street, Suite 1200
Oakland, CA 94607-4052
(510) 627-7175

STATUS OF THE COMMUNITY NFIP MAPS

We will not physically revise and republish the FIRM for your community to reflect the modifications made by this LOMR at this time. When changes to the previously cited FIRM panel(s) warrant physical revision and republication in the future, we will incorporate the modifications made by this LOMR at that time.

This determination is based on the flood data presently available. The enclosed documents provide additional information regarding this determination. If you have any questions about this document, please contact the FEMA Map Assistance Center toll free at 1-877-336-2627 (1-877-FEMA MAP) or by letter addressed to the LOMR Depot, 3601 Eisenhower Avenue, Alexandria, VA 22304. Additional Information about the NFIP is available on our website at http://www.fema.gov/nfip.

Kevin C. Long, CFM, Project Engineer

Engineering Management Section
Mitigation Division

Washington, D.C. 20472

LETTER OF MAP REVISION DETERMINATION DOCUMENT (CONTINUED)

PUBLIC NOTIFICATION OF REVISION

This revision is effective as of the date of this letter. Any requests to review or alter this determination should be made within 30 days and must be based on scientific or technical data.

This determination is based on the flood data presently available. The enclosed documents provide additional information regarding this determination. If you have any questions about this document, please contact the FEMA Map Assistance Center toll free at 1-877-336-2627 (1-877-FEMA MAP) or by letter addressed to the LOMR Depot, 3601 Eisenhower Avenue, Alexandria, VA 22304. Additional Information about the NFIP is available on our website at http://www.fema.gov/nfip.

Kevin C. Long, CFM, Project Engineer

Engineering Management Section
Mitigation Division

Washington, D.C. 20472

SEP 2 1 2006

CERTIFIED MAIL RETURN RECEIPT REQUESTED

The Honorable Oscar Goodman Mayor, City of Las Vegas 400 Stewart Avenue Las Vegas, NV 89101

IN REPLY REFER TO:

06-09-B483P Case No.:

Community Name: City of Las Vegas, NV

Community No.: 325276

Effective Date of SEP 2 1 2006

Dear Mayor Goodman:

The Flood Insurance Rate Map for your community has been revised by this Letter of Map Revision (LOMR). Please use the enclosed annotated map panel(s) revised by this LOMR for floodplain management purposes and for all flood insurance policies and renewals issued in your community.

Additional documents are enclosed which provide information regarding this LOMR. Please see the List of Enclosures below to determine which documents are included. Other attachments specific to this request may be included as referenced in the Determination Document. If you have any questions regarding floodplain management regulations for your community or the National Flood Insurance Program (NFIP) in general, please contact the Consultation Coordination Officer for your community. If you have any technical questions regarding this LOMR, please contact the Director, Federal Insurance and Mitigation Division of the Department of Homeland Security's Federal Emergency Management Agency (FEMA) in Oakland, California, at (510) 627-7175, or the FEMA Map Assistance Center, toll free, at 1-877-336-2627 (1-877-FEMA MAP). Additional information about the NFIP is available on our website at http://www.fema.gov/nfip.

Sincerely,

Kevin C. Long, CFM, Project Engineer

Kevin C Long

Engineering Management Section

Mitigation Division

List of Enclosures:

Letter of Map Revision Determination Document Annotated Flood Insurance Rate Map

cc: Mr. Randy Fultz, P.E. Assistant City Engineer City of Las Vegas

> Mr. Kevin Eubanks, P.E., CFM Assistant General Manager Clark County Regional Flood Control District

For: William R. Blanton Jr., CFM, Chief **Engineering Management Section** Mitigation Division

Mr. Michael J. Ludwig, P.E. Project Manager Flood Control District G.C. Wallace, Inc.

Washington, D.C. 20472

LETTER OF MAP REVISION DETERMINATION DOCUMENT

	COMMUNITY AND REVISION	INFORMATION	PROJECT DESCRIPTI	ON	BASIS OF REQUEST
COMMUNITY	Clark	Las Vegas County vada	CULVERT	HY	DRAULIC ANALYSIS DROLOGIC ANALYSIS W TOPOGRAPHIC DATA
	COMMUNITY NO.: 325276				
IDENTIFIER	Queensridge Place		APPROXIMATE LATITUDE & SOURCE: USGS QUADRANG		36.165, -115.293 : NAD 83
	ANNOTATED MAPPING E	NCLOSURES	ANNOTA	ATED STUDY E	NCLOSURES
TYPE: FIRM*	NO.: 32003C2145E	DATE: September 27, 2002	NO REVISION TO THE FLOO	DD INSURANCE	E STUDY REPORT
Enclosuras raflac	t changes to flooding sources a	ffected by this revision			
	t changes to flooding sources a surance Rate Map; ** FBFM - F	ffected by this revision. lood Boundary and Floodway Map	; *** FHBM - Flood Hazard Bour	dary Map	V -1
		lood Boundary and Floodway Map	; *** FHBM - Flood Hazard Bour	dary Map	
* FIRM - Flood In	surance Rate Map; ** FBFM - F	FLOODING SOURCE(Supstream to approximately 100 fee) & REVISED REACH(ES) et downstream of South Rampar		
* FIRM - Flood In	surance Rate Map; ** FBFM - F	FLOODING SOURCE(S upstream to approximately 100 fee) & REVISED REACH(ES) et downstream of South Rampari	Boulevard	
* FIRM - Flood In	surance Rate Map; ** FBFM - F	FLOODING SOURCE(Supstream to approximately 100 fee) & REVISED REACH(ES) et downstream of South Rampart		Decreases YES

* BFEs - Base Flood Elevations

DETERMINATION

This document provides the determination from the Department of Homeland Security's Federal Emergency Management Agency (FEMA) regarding a request for a Letter of Map Revision (LOMR) for the area described above. Using the information submitted, we have determined that a revision to the flood hazards depicted in the Flood Insurance Study (FIS) report and/or National Flood Insurance Program (NFIP) map is warranted. This document revises the effective NFIP map, as indicated in the attached documentation. Please use the enclosed annotated map panels revised by this LOMR for floodplain management purposes and for all flood insurance policies and renewals in your community.

This determination is based on the flood data presently available. The enclosed documents provide additional information regarding this determination. If you have any questions about this document, please contact the FEMA Map Assistance Center toll free at 1-877-336-2627 (1-877-FEMA MAP) or by letter addressed to the LOMR Depot, 3601 Eisenhower Avenue, Alexandria, VA 22304. Additional Information about the NFIP is available on our website at http://www.fema.gov/nfip.

Kevin C. Long Kevin C. Long, CFM, Project Engineer

Kevin C. Long, CFM, Project Engineer Engineering Management Section Mitigation Division

Washington, D.C. 20472

LETTER OF MAP REVISION DETERMINATION DOCUMENT (CONTINUED)

COMMUNITY INFORMATION

APPLICABLE NFIP REGULATIONS/COMMUNITY OBLIGATION

We have made this determination pursuant to Section 206 of the Flood Disaster Protection Act of 1973 (P.L. 93-234) and in accordance with the National Flood Insurance Act of 1968, as amended (Title XIII of the Housing and Urban Development Act of 1968, P.L. 90-448), 42 U.S.C. 4001-4128, and 44 CFR Part 65. Pursuant to Section 1361 of the National Flood Insurance Act of 1968, as amended, communities participating in the NFIP are required to adopt and enforce floodplain management regulations that meet or exceed NFIP criteria. These criteria, including adoption of the FIS report and FIRM, and the modifications made by this LOMR, are the minimum requirements for continued NFIP participation and do not supersede more stringent State/Commonwealth or local requirements to which the regulations apply.

NFIP regulations Subparagraph 60.3(b)(7) requires communities to ensure that the flood-carrying capacity within the altered or relocated portion of any watercourse is maintained. This provision is incorporated into your community's existing floodplain management ordinances; therefore, responsibility for maintenance of the altered or relocated watercourse including any related appurtenances such as bridges, culverts, and other drainage structures rests with your community. We may request that your community submit a description and schedule of maintenance activities necessary to ensure this requirement.

COMMUNITY REMINDERS

We based this determination on the 1-percent-annual-chance discharges computed in the submitted hydrologic model. Future development of projects upstream could cause increased discharges, which could cause increased flood hazards. A comprehensive restudy of your community's flood hazards would consider the cumulative effects of development on discharges and could, therefore, indicate that greater flood hazards exist in this area.

Your community must regulate all proposed floodplain development and ensure that permits required by Federal and/or State/Commonwealth law have been obtained. State/Commonwealth or community officials, based on knowledge of local conditions and in the interest of safety, may set higher standards for construction or may limit development in floodplain areas. If your State/Commonwealth or community has adopted more restrictive or comprehensive floodplain management criteria, those criteria take precedence over the minimum NFIP requirements.

We will not print and distribute this LOMR to primary users, such as local insurance agents or mortgage lenders; instead, the community will serve as a repository for the new data. We encourage you to disseminate the information in this LOMR by preparing a news release for publication in your community's newspaper that describes the revision and explains how your community will provide the data and help interpret the NFIP maps. In that way, interested persons, such as property owners, insurance agents, and mortgage lenders, can benefit from the information.

This determination is based on the flood data presently available. The enclosed documents provide additional information regarding this determination. If you have any questions about this document, please contact the FEMA Map Assistance Center toll free at 1-877-336-2627 (1-877-FEMA MAP) or by letter addressed to the LOMR Depot, 3601 Eisenhower Avenue, Alexandria, VA 22304. Additional Information about the NFIP is available on our website at http://www.fema.gov/nfip.

Kevin C. Long, CFM, Project Engineer Engineering Management Section Mitigation Division

Washington, D.C. 20472

LETTER OF MAP REVISION DETERMINATION DOCUMENT (CONTINUED)

We have designated a Consultation Coordination Officer (CCO) to assist your community. The CCO will be the primary liaison between your community and FEMA. For information regarding your CCO, please contact:

Ms. Sally M. Ziolkowski
Director, Federal Insurance and Mitigation Division
Federal Emergency Management Agency, Region IX
1111 Broadway Street, Suite 1200
Oakland, CA 94607-4052
(510) 627-7175

STATUS OF THE COMMUNITY NFIP MAPS

We will not physically revise and republish the FIRM for your community to reflect the modifications made by this LOMR at this time. When changes to the previously cited FIRM panel(s) warrant physical revision and republication in the future, we will incorporate the modifications made by this LOMR at that time.

This determination is based on the flood data presently available. The enclosed documents provide additional information regarding this determination. If you have any questions about this document, please contact the FEMA Map Assistance Center toll free at 1-877-336-2627 (1-877-FEMA MAP) or by letter addressed to the LOMR Depot, 3601 Eisenhower Avenue, Alexandria, VA 22304. Additional Information about the NFIP is available on our website at http://www.fema.gov/nfip.

Kevin C. Long, CFM, Project Engineer Engineering Management Section Mitigation Division

106979 10.3.1.0609B483 102-I-C

Washington, D.C. 20472

LETTER OF MAP REVISION **DETERMINATION DOCUMENT (CONTINUED)**

This determination is based on the flood data presently available. The enclosed documents provide additional information regarding this determination. If you have any questions about this document, please contact the FEMA Map Assistance Center toll free at 1-877-336-2627 (1-877-FEMA MAP) or by letter addressed to the LOMR Depot, 3601 Eisenhower Avenue, Alexandria, VA 22304. Additional Information about the NFIP is available on our website at http://www.fema.gov/nfip.

Kevin C. Long, CFM, Project Engineer Engineering Management Section

Mitigation Division

